Skip to main content
Log in

Use of a Ti Buffer Layer to Improve the Mechanical Properties of Ge2Sb2Te5 Thin Films for Phase-Change Memory

  • Advanced Characterization of Interfaces and Thin Films
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The inclusion of a Ti inter-adhesion and electrode layer is important for the integration of Ge2Sb2Te5 (GST) phase-change materials into device fabrication. The microstructure and mechanical properties of Ge2Sb2Te5 thin films with a Ti buffer layer (GST/Ti) were investigated in this work. The results showed that the Ti layer affects the microstructure of GST thin films due to the diffusion of Ti atoms into the interface of the GST/Ti stack to form Te2Ti phase. A uniform grain distribution was observed in the GST/Ti thin films. Conversely, a nonuniform distribution and “abnormal” growth of {0001}-oriented grains were observed in GST thin films without a Ti buffer layer. Furthermore, the effect of the Ti transition layer on the grain growth mode of the GST, which has a significant influence on its mechanical properties, is discussed: a smaller unbalanced stress and more uniform grain distribution are evident in GST/Ti, thus the homogeneous grain distribution of GST with the addition of a Ti layer contributes to the higher hardness and elasticity modulus values. The improved mechanical properties of such GST/Ti thin films may be a factor ensuring the robustness of phase-change memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Wuttig and N. Yamada, Nat. Mater. 6, 824 (2007).

    Article  Google Scholar 

  2. M. Cassinerio, N. Ciocchini, and D. Ielmini, Adv. Mater. 25, 5975 (2013).

    Article  Google Scholar 

  3. A.M. Mio, S.M. Privitera, V. Bragaglia, F. Arciprete, C. Bongiorno, R. Calarco, and E. Rimini, Nanotechnology 28, 065706 (2017).

    Article  Google Scholar 

  4. V.L. Deringer, R. Dronskowski, and M. Wuttig, Adv. Funct. Mater. 25, 6343 (2015).

    Article  Google Scholar 

  5. A.V. Kolobov, P. Fons, J. Tominaga, and S.R. Ovshinsky, Phys. Rev. B 87, 165206 (2013).

    Article  Google Scholar 

  6. D. Mandelli, S. Caravati, and M. Bernasconi, Phys. Status Solidi B 249, 2140 (2012).

    Article  Google Scholar 

  7. K.N. Chen Jr., C. Cabral, and L. Krusin-Elbaum, Microelectron. Eng. 85, 2346 (2008).

    Article  Google Scholar 

  8. S.G. Alberici, R. Zonca, and P. Pashmakov, Appl. Surf. Sci. 821, 231 (2004).

    Google Scholar 

  9. V.A. Venugopal, G. Ottaviani, C. Bresolin, D. Erbetta, A. Modelli, and E. Varesi, J. Electron. Mater. 38, 2063 (2009).

    Article  Google Scholar 

  10. S.Y. Ie, B.T. Bea, Y.K. Ahn, M.Y. Chang, D.G. You, M.H. Cho, and H. Jeong, Appl. Phys. Lett. 90, 251917 (2007).

    Article  Google Scholar 

  11. M. Behrens, A. Lotnyk, U. Roß, J. Griebel, P. Schumacher, J.W. Gerlach, and B. Rauschenbach, CrystEngComm 20, 3688 (2018).

    Article  Google Scholar 

  12. J. Park and J. Bae, Microscopy 64, 381 (2015).

    Article  Google Scholar 

  13. S. Loubriat, D. Muyard, F. Fillot, A. Roule, M. Veillerot, J.P. Barnes, and S. Maitrejean, Microelectron. Eng. 88, 817 (2011).

    Article  Google Scholar 

  14. J.H. Park, S.W. Kim, J.H. Kim, D.H. Ko, Z. Wu, J.K. Ahn, and S.Y. Choi, Thin Solid Films 612, 135 (2016).

    Article  Google Scholar 

  15. S.M. Jeong, K.H. Kim, S.M. Choi, and H.L. Lee, Jpn. J. Appl. Phys. 48, 045503 (2009).

    Article  Google Scholar 

  16. I.M. Park, J.K. Jung, S.O. Ryu, K.J. Choi, B.G. Yu, Y.B. Park, and Y.C. Joo, Thin Solid Films 517, 848 (2008).

    Article  Google Scholar 

  17. F. Sava, C.N. Borca, A.C. Galca, G. Socol, D. Grolimund, C. Mihai, and A. Velea, Philos. Mag. 99, 55 (2019).

    Article  Google Scholar 

  18. M.A. Caldwell, R.G.D. Jeyasingh, H.S.P. Wong, and D.J. Milliron, Nanoscale 4, 4382 (2012).

    Article  Google Scholar 

  19. J.L. Battaglia, A. Kusiak, A. Saci, R. Fallica, A. Lamperti, and C. Wiemer, Appl. Phys. Lett. 105, 121903 (2014).

    Article  Google Scholar 

  20. J. Narayana and B.C. Larson, J. Appl. Phys. 93, 278 (2003).

    Article  Google Scholar 

  21. L.B. Freund and S. Suresh, Thin Film Materials; Stress, Defect Formation and Surface Evolution (Cambridge: Cambridge University Press, 2004), pp. 71–73.

    Book  Google Scholar 

  22. C.A. Jong, W. Fang, C.M. Lee, and T.S. Chin, Jpn. J. Appl. Phys. 40, 3320 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51771023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leng Chen.

Ethics declarations

Conflict of interest

We declare that no conflicts of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Chen, L. Use of a Ti Buffer Layer to Improve the Mechanical Properties of Ge2Sb2Te5 Thin Films for Phase-Change Memory. JOM 72, 2146–2153 (2020). https://doi.org/10.1007/s11837-020-04043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04043-5

Navigation