Skip to main content
Log in

The effect of thickness on texture of Ge2Sb2Te5 phase-change films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Phase-change random access memory (PCRAM) has the advantages of nonvolatile, good scalability, high speed, low power, long life and compatibility with standard complementary metal oxide semiconductor (CMOS) process. The key material in PCRAM is phase-change material, which can greatly affect the performance of PCRAM device. Ge2Sb2Te5 (GST) is the most mature phase-change material and has been studied most widely at present. In this paper, GST films with thickness of 500 nm, 100 nm, 50 nm and 20 nm were studied by scanning electron microscope (SEM)–electron backscattering diffraction (EBSD) technique. According to the experiments, it is found that the crystal grain size has a tendency to grow larger and the GST film has a more obvious < 0001 > texture as its thickness decreases. During this process, surface energy plays an increasingly important role with the decrease in GST film thickness. Finally, (0001) plane with the highest work function and lowest surface energy leads to visible Z < 0001 > texture corresponding to film thickness. These results of regularity are helpful as the semiconductor industry today has the need for PCRAM devices with higher density and smaller size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Created by Origin (2019)

Fig. 2

Source: Created by HKL Channel 5 of Oxford Instruments

Fig. 3

Source: Created by Origin (2019)

Fig. 4

Source: Created by HKL Channel 5 of Oxford Instruments

Similar content being viewed by others

References

  1. J.F. Scott, Ferroelectric Memories (Springer, Berlin, 2013)

    Google Scholar 

  2. N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, Y. Osada, Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. J. Appl. Phys. 91(8), 5246–5249 (2002)

    Article  CAS  Google Scholar 

  3. G.Y. Sun, X.Y. Dong, Y. Xie, J. Li, Y.R. Chen, A novel architecture of the 3D stacked MRAM L2 cache for CMPs. IEEE 15th international symposium of high performance computer architecture (HPCA), 239–249, 2009

  4. J.W. Seo, J.W. Park, K.S. Lim, J.H. Yang, S.J. Kang, Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Appl. Phys. Lett. 93, 223505 (2008). https://doi.org/10.1063/1.3041643

    Article  CAS  Google Scholar 

  5. H.S.P. Wong, H.Y. Lee, S.M. Yu, Y.H. Chen, Y. Wu, P.S. Chen et al., Metal-oxide RRAM P. IEEE 100(6), 1951–1970 (2012)

    Article  CAS  Google Scholar 

  6. Z.T. Song, Phase change memory and application fundamentals. (Science Press, 2013) (in Chinese)

  7. S. Raoux, Phase change materials. Annu. Rev. Mater. Res. 39, 25–48 (2009)

    Article  CAS  Google Scholar 

  8. D. Yu, S. Brittman, J.S. Lee, A.L. Falk, H. Park, Minimum voltage for threshold switching in nanoscale phase-change memory. Nano Lett. 8(10), 3429–3433 (2008)

    Article  CAS  Google Scholar 

  9. S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.C. Chen, R.M. Shelby et al., Phase-change random access memory: a scalable technology. IBM J. Res. Dev. 52(4/5), 465–479 (2008)

    Article  CAS  Google Scholar 

  10. X.Q. Wei, L.P. Shi, T.C. Chong, R. Zhao, H.K. Lee, Thickness dependent nano-crystallization in Ge2Sb2Te5 films and its effect on devices. Jpn. J. Appl. Phys. 46, 2211–2214 (2007)

    Article  CAS  Google Scholar 

  11. C.D. Wright, M. Armand, M.M. Aziz, Terabit-per-square-inch data storage using phase-change media and scanning electrical nanoprobes. IEEE Trans. Nanotechnol. 5, 50–61 (2006)

    Article  Google Scholar 

  12. S. Raoux, J.L. Jordan-Sweet, A.J. Kellock, Crystallization properties of ultrathin phase change films. J. Appl. Phys. 103, 7 (2008)

    Article  Google Scholar 

  13. J.M. Li, J.J. Wang, Y. Jia, Influence of the quantum size effects on properties of the ultrathin Pb (1 1 1) film. J. Zhengzhou Univ. 42(1), 103–111 (2010)

    CAS  Google Scholar 

  14. Y. Guo, Y.F. Zhang, X.Y. Bao, T.Z. Han, Z. Tang, L.X. Zhang et al., Superconductivity modulated by quantum size effects. Science 306(5703), 1915–1917 (2004)

    Article  CAS  Google Scholar 

  15. D. Xie, W.H. Qi, M.P. Wang, Size and shape dependent melting-thermodynamic properties of metallic nanoparticles. Acta Metall. Sin. 10, 1041–1044 (2004)

    Google Scholar 

  16. G.C. Fan, Z. Ma, Z.Y. Huan, X.C. Tan, X.C. Yao, Surface thermodynamic properties of micro/nano peanut-shaped CaMoO4. Chem. J. Chin. Univ. 10, 1007–1010 (2014)

    Google Scholar 

  17. M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007)

    Article  CAS  Google Scholar 

  18. Y.C. Wang, Y.F. Chen, D.L. Cai, Y. Cheng, X.G. Chen, Y.Q. Wang et al., Understanding the early cycling evolution behaviors for phase change memory application. J. Appl. Phys. 116(20), 7020–7028 (2014)

    Google Scholar 

  19. Y.C. Wang, X.G. Chen, Y. Cheng, X.L. Zhou, S.L. Lv, Y.F. Chen et al., RESET distribution improvement of phase change memory: the impact of pre-programming. IEEE Electron Device Lett. 35(5), 536–538 (2014)

    Article  CAS  Google Scholar 

  20. Y.H. Zheng, Y. Cheng, R. Huang, R.J. Qi, F. Rao, K.Y. Ding et al., Surface energy driven cubic-to-hexagonal grain growth of Ge2Sb2Te5 thin film. Sci. Rep. 7, 5915 (2017)

    Article  Google Scholar 

  21. Y.H. Zheng, Y. Wang, T.J. Xin, Y. Cheng, R. Huang, P. Liu et al., Direct atomic identification of cation migration induced gradual cubic-to-hexagonal phase transition in Ge2Sb2Te5. Commun. Chem. 2, 13 (2019)

    Article  Google Scholar 

  22. EBSD software AZtecHKL introduction (OXFORD official website 2019) https://nano.oxinst.com/products/ebsd. Accessed 3 May 2019

  23. HKL Channel 5 software introduction (OXFORD official website 2019) 2019.5.3 http://www.oxford-instruments.cn/products/microanaiysis/ebsd/ebsd-post-processing-software. Accessed 3 May 2019

  24. S. Suwas, R.K. Ray, Crystallographic Texture of Materials (Springer, London, 2014), pp. 11–21

    Google Scholar 

  25. J. Wang, J.J. Bian, G.F. Wang, Calculation of surface energy density of rough surface by atomic simulation. Appl. Surf. Sci. 484, 184–188 (2019)

    Article  CAS  Google Scholar 

  26. D.P. Ji, S.Q. Wang, Study of surface energy and work function of hex metals by first-principles calculation. Acta Metall. Sin. 51(5), 597–602 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This was supported by the National Key Research and Development Program of China (2017YFA0303403, 2017YFA0206101, 2017YFB0405601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Cheng or Ruijuan Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., He, T., Yu, K. et al. The effect of thickness on texture of Ge2Sb2Te5 phase-change films. J Mater Sci: Mater Electron 31, 5848–5853 (2020). https://doi.org/10.1007/s10854-019-02645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02645-7

Navigation