Skip to main content

Advertisement

Log in

Liquid-Metal-Mediated Recrystallization of Zinc Under Ambient Conditions

  • Mechanical Properties of Metastable Materials Containing Strong Disorder
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Liquid-metal-mediated recrystallization is a poorly understood facet of liquid metal embrittlement that has never before been the subject of systematic study. In this work, commercially pure Zn sheet with varied grain size and amount of prior deformation is exposed to liquid eutectic Ga-In, and the resulting microstructural evolution is characterized. The penetration rate of the liquid into the grain boundary network is observed to be strongly dependent on grain size, with little or no dependence on prior deformation. However, the extent of recrystallization and the accompanying evolution of crystallographic and morphologic texture is strongly dependent on prior deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Suarez, D.P. Parekh, C. Ladd, D. Vashaee, M.D. Dickey, and M.C. Öztürk, Appl. Energy 202, 736 (2017)

    Article  Google Scholar 

  2. D.P. Parekh, C. Ladd, L. Panich, K. Moussa, and M.D. Dickey, Lab Chip 16, 1812 (2016)

    Article  Google Scholar 

  3. M. Rashed Khan, G.J. Hayes, J.H. So, G. Lazzi, and M.D. Dickey, Appl. Phys. Lett. 99, 013501 (2011)

    Article  Google Scholar 

  4. G.J. Hayes, J.H. So, A. Qusba, M.D. Dickey, and G. Lazzi, IEEE Trans. Antennas Propag. 60, 2151 (2012)

    Article  Google Scholar 

  5. A. Qusba, A.K. RamRakhyani, J.H. So, G.J. Hayes, M.D. Dickey, and G. Lazzi, IEEE Sens. J. 14, 1074 (2014)

    Article  Google Scholar 

  6. K. Khoshmanesh, S.Y. Tang, J.Y. Zhu, S. Schaefer, A. Mitchell, K. Kalantar-zadeh, and M.D. Dickey, Lab Chip17, 974 (2017)

    Article  Google Scholar 

  7. I.D. Joshipura, H.R. Ayers, C. Majidi, and M.D. Dickey, J. Mater. Chem. C 3, 3834 (2015)

    Article  Google Scholar 

  8. S. Zhu, J.H. So, R. Mays, S. Desai, W.R. Barnes, B. Pourdeyhimi, and M.D. Dickey, Adv. Funct. Mater. 23, 2308 (2013)

    Article  Google Scholar 

  9. M.G. Mohammed and M.D. Dickey, Sens. Actuators A Phys. Complete, 246 (2013)

    Article  Google Scholar 

  10. W. Rostoker, Embrittlement by Liquid Metals (Reinhold Publishing Corporation, New York, 1960)

    Google Scholar 

  11. M.H. Kamdar, Embrittlement of Engineering Alloys, Volume 25 of Treatise on Materials Science and Technology (Academic Press Inc., New York, 1983)

    Google Scholar 

  12. N.V. Pertsov and P.A. Rebinder, Dokl. Akad. Nauk SSSR 123, 1068 (1958)

    Google Scholar 

  13. F.N. Rhines, J.A. Alexander, and W.F. Barclay, Trans. ASM 55, 22 (1962)

    Google Scholar 

  14. S.P. Lynch, Scr. Metall. 13, 1051 (1979)

    Article  Google Scholar 

  15. D.R. Lesuer, J.B. Bergin, S.A. McInturff, and B.A. Kuhn, Microstruct. Sci. 9, 256 (1981)

    Google Scholar 

  16. D. Sapundjiev, S. Van Dyck, and W. Bogaerts, Corros. Sci. 48, 577 (2006)

    Article  Google Scholar 

  17. Y. Lu, Q. Hu, Y. Lin, D.B. Pacardo, C. Wang, W. Sun, F.S. Ligler, M.D. Dickey, and Z. Gu, Nat. Commun. 6, 10066 (2015)

    Article  Google Scholar 

  18. M.D. Dickey, Adv. Mater. 29, 1606425 (2017)

    Article  Google Scholar 

  19. E. Nguena, D. Danovitch, M. Kanso, and R. Langlois, IEEE (2017), pp. 1584–1591

  20. M. Naderi, M. Peterlechner, E. Schafler, S.V. Divinski, and G. Wilde, Acta Mater. 99, 196 (2015)

    Article  Google Scholar 

  21. V.I. Likhtman, E.D. Shchukin, and P.A. Rebinder, Physicochemical Mechanics of Materials, Chap. 5. (Israel Program for Scientific Translations, Jerusalem, Israel, 1962)

  22. F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom. 160, 63 (2010)

    Article  Google Scholar 

  23. Thermo-Calc, TCSLD3 Solder Alloys database (2019)

  24. W.J. Svirbely and S.M. Read, J. Phys. Chem. 66, 658 (1962)

    Article  Google Scholar 

  25. K. Wolski and V. Laporte, Mater. Sci. Eng. A 495, 138 (2008)

    Article  Google Scholar 

  26. L.N. Brewer, D.P. Field, and C.C. Merriman, Electron Backscatter Diffraction in Materials Science (Springer, Boston, MA, 2009), pp. 251–262

    Book  Google Scholar 

  27. V.M. Miller, Texture evolution during thermomechanical processing in rare earth free magnesium alloys. PhD dissertation, University of California Santa Barbara, Santa Barbara, CA (2016)

  28. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013)

    Article  Google Scholar 

  29. E.E. Glickman, Defect Diffus. Forum 264, 141 (2007)

    Article  Google Scholar 

  30. H. Herø, C.J. Simensen, and R.B. Jørgensen, Biomaterials 17, 1321 (1996)

    Article  Google Scholar 

  31. M.R. Pinasco, E. Angelini, E. Cordano, and F. Rosalbino, J. Alloy. Compd. 317–318, 411 (2001)

    Article  Google Scholar 

  32. D.L. Smith and H.J. Caul, J. Am. Dent. Assoc. 53, 315 (1956)

    Article  Google Scholar 

  33. G.G. Harman, Rev. Sci. Instrum. 31, 717 (1960)

    Article  Google Scholar 

  34. S. Sommadossi, H.E. Troiani, and A. Fernández Guillermet, J. Mater. Sci. 42, 9707 (2007)

    Article  Google Scholar 

  35. D.F. Baldwin, R.D. Deshmukh, and C.S. Hau, 1996 Proceedings 46th Electronic Components and Technology Conference (1996), pp. 1143–1150

  36. C.A. MacKay, IEEE Micro 13, 46 (1993)

    Article  Google Scholar 

  37. M.D. Dickey, Liquid-Solid Mixtures for Additive Patterning of Solid Metals at Room Temperature (unpublished) (2019)

  38. R. Rosenberg and I. Cadoff, in Fracture of Solids, ed. by D.C. Drucker, J.J. Gilman (Interscience, New York, 1963), p. 607

Download references

Acknowledgements

The authors thank M.D. Dickey for highly productive discussions throughout this project. This work is partially supported by the National Science Foundation award no. DMR-1842650. This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (award no. ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Norkett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norkett, J.E., Miller, V.M. Liquid-Metal-Mediated Recrystallization of Zinc Under Ambient Conditions. JOM 72, 860–867 (2020). https://doi.org/10.1007/s11837-019-03954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03954-2

Navigation