Skip to main content
Log in

Multiplicity and Separability of the Mechanisms of Liquid Metal Embrittlement in the Ga–In–Al System

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The study of liquid metal embrittlement has historically been plagued by apparently anomalous behavior that defies mechanistic understanding. Recently, the authors hypothesized that many seemingly contradictory results could be explained by considering liquid metal embrittlement as multiple mechanisms rather than as a monolith. In this work, that hypothesis was tested by exposing 5052 aluminum plate to Ga and a eutectic gallium–indium (eGaIn) alloy in environments with varied humidity. The results were captured via timelapse photography and optical microscopy and the resultant grain boundary penetration rates were measured. Two distinct liquid metal embrittlement mechanisms, liquid metal corrosion and grain boundary wetting, were observed. These mechanisms interacted constructively, but were separable via control of the humidity during exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.D. Dickey: Adv. Mater., 2017, vol. 29(27), pp. 1–9.

    Article  Google Scholar 

  2. V. Bharambe, D.P. Parekh, C. Ladd, K. Moussa, M. Dickey, and J.J. Adams: IEEE Antennas Wirel. Prop. Lett., 2018, vol. 300, pp. 1–4.

    Google Scholar 

  3. H. Kim, D.A. Boysen, J.M. Newhouse, B.L. Spatocco, B. Chung, P.J. Burke, D.J. Bradwell, K. Jiang, A.A. Tomaszowska, K. Wang, W. Wei, L.A. Ortiz, S.A. Barriga, S.M. Poizeau, and D.R. Sadoway: Chem. Rev., 2013, vol. 113(3), pp. 2075–99.

    Article  CAS  Google Scholar 

  4. A. Alemberti, V. Smirnov, C. F. Smith, and M. Takahashi: Overview of lead-cooled fast reactor activities, 2014.

  5. F.L. Tabare: Plasma Phys. Control. Fusion, 2016, vol. 58(1), pp. 1–8.

    Google Scholar 

  6. W.H. Johnson: Proc. R. Soc. Lond., 1874, vol. 23(156–163), pp. 168–79.

    Google Scholar 

  7. M.M. Chaevskii and V.V. Popovich: Fiz.-Khim. Mekh. Mater., 1966, vol. 2(2), pp. 143–48.

    CAS  Google Scholar 

  8. M.J. Kelley and N.S. Stoloff: Metall. Trans. A, 1975, vol. 6A(1), pp. 159–66.

    Article  Google Scholar 

  9. J.E. Norkett, M.D. Dickey, and V.M. Miller: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 2158–72.

    Article  Google Scholar 

  10. C. Elbaum: Trans. Metall. Soc. AIME, 1959, vol. 215(3), pp. 476–78.

    CAS  Google Scholar 

  11. W.R. Goggin and J.W. Moberly: Trans. ASM, 1966, vol. 59, pp. 315–23.

    CAS  Google Scholar 

  12. L. Peeters, C. Roques-Carmes, M. Aucouturier, and G. Wyon: Memoires Scientifiques Rev Metall., 1972, vol. 69(2), pp. 81–95.

    CAS  Google Scholar 

  13. R. Tanaka, P.-K. Choi, H. Koizumi, and S.-I. Hyodo: Mater. Trans., 2001, vol. 42(1), pp. 138–40.

    Article  CAS  Google Scholar 

  14. K. Ina and H. Koizumi: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 390–94.

    Article  Google Scholar 

  15. J. Luo, H. Cheng, K.M. Asl, C.J. Kiely, and M.P. Harmer: Science, 2011, vol. 333(6050), pp. 1730–33.

    Article  CAS  Google Scholar 

  16. J.E. Norkett and V.M. Miller: JOM, 2020, vol. 72(2), pp. 860–67.

    Article  CAS  Google Scholar 

  17. W. Rostoker, J. McCaughey, and H. Markus: Embrittlement by Liquid Metals, Reinhold Publishing Corporation, New York, 1960.

    Google Scholar 

  18. K. Lambrinou, E. Charalampopoulou, T. Van der Donck, R. Delville, and D. Schryvers: J. Nucl. Mater., 2017, vol. 490(2017), pp. 9–27.

    Article  CAS  Google Scholar 

  19. K.A. Unocic and D.T. Hoelzer: J. Nucl. Mater., 2016, vol. 479, pp. 357–64.

    Article  CAS  Google Scholar 

  20. R. H. Hiltz: in J. E. Draley and J. R. Weeks (eds.), Corrosion by Liquid Metals: Proceedings of the Sessions on Corrosion by Liquid Metals, Springer, Boston, 1970.

  21. D.R. Lesuer, J.B. Bergin, S.A. McInturff, and B.A. Kuhn: Microstruct. Sci., 1981, vol. 9, pp. 256–66.

    Google Scholar 

  22. C.F. Old and P. Trevena: Metal Sci., 1981, vol. 15, pp. 281–85.

    Article  CAS  Google Scholar 

  23. M.R. Pinnel and J.E. Bennett: J. Mater. Sci., 1972, vol. 7(9), pp. 1016–26.

    Article  CAS  Google Scholar 

  24. S.P. Lynch: Metall. Mater. Trans. A, 2013, vol. 44A(3), pp. 1209–29.

    Article  Google Scholar 

  25. M.H. Kamdar and A.R.C. Westwood: Acta Metall., 1968, vol. 16(November), pp. 1335–42.

    Article  CAS  Google Scholar 

  26. C. M. Preece and A. R. C. Westwood: in P. L. Pratt (ed.), Proceedings of the 2nd International Conference on Fracture, Chapman and Hall, London, 1969 pp. 37/1–37/11.

  27. A. Legris, J.B. Vogt, A. Verleene, and I. Serre: J. Mater. Sci., 2005, vol. 40, pp. 2459–63.

    Article  CAS  Google Scholar 

  28. A.H. Maitland and G.A. Chadwick: Philos. Magn., 1969, vol. 19(160), pp. 645–51.

    Article  CAS  Google Scholar 

  29. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9(7), pp. 671–75.

    Article  CAS  Google Scholar 

  30. F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–68.

    Article  CAS  Google Scholar 

  31. O.V. Mishin and B. Bay: Metall. Mater. Trans. A, 2000, vol. 31A(6), pp. 1653–62.

    Article  CAS  Google Scholar 

  32. T. Mae and S. Hori: Light Metal, 1984, vol. 34(1), pp. 3–7.

    Article  Google Scholar 

  33. E. Pereiro-Lopez, W. Ludwig, D. Bellet, and J. Baruchel: Defect and Diffusion Forum, 2003.

  34. M. Rajagopalan, M.A. Bhatia, M.A. Tschopp, D.J. Srolovitz, and K.N. Solanki: Acta Mater., 2014, vol. 73, pp. 312–25. https://doi.org/10.1016/j.actamat.2014.04.011.

    Article  CAS  Google Scholar 

  35. D.J. Goddard and J.A. William: J. Inst. Met., 1971, vol. 99, pp. 323–24.

    CAS  Google Scholar 

  36. C. Roques-Carmes, M. Aucouturier, and P. Lacombe: Metal Sci. J., 1973, vol. 7, p. 128.

    Article  CAS  Google Scholar 

  37. C.A.P. Horton and K.J. Goddard: Metallography, 1973, vol. 139, pp. 131–39.

    Article  Google Scholar 

  38. N. Birbilis, R. Zhang, M.L. Lim, R.K. Gupta, C.H. Davies, S.P. Lynch, R.G. Kelly, and J.R. Scully: Corrosion, 2013, vol. 69(4), pp. 396–402.

    Article  CAS  Google Scholar 

  39. J.E. Bennett and M.R. Pinnel: J. Mater. Sci., 1973, vol. 8(8), pp. 1189–93.

    Article  CAS  Google Scholar 

  40. D.O. Flamini, S.B. Saidman, and J.B. Bessone: Corros. Sci., 2006, vol. 48(6), pp. 1413–25.

    Article  CAS  Google Scholar 

  41. S.C. Tan, H. Gui, X.H. Yang, B. Yuan, S.H. Zhan, and J. Liu: Int. J. Hydrogen Energy, 2016, vol. 41(48), pp. 22663–67.

    Article  CAS  Google Scholar 

  42. A.V. Ilyukhina, O.V. Kravchenko, B.M. Bulychev, and E.I. Shkolnikov: Int. J. Hydrogen Energy, 2010, vol. 35(5), pp. 1905–10. https://doi.org/10.1016/j.ijhydene.2009.12.118.

    Article  CAS  Google Scholar 

  43. M.V. Trenikhin, V. Bubnov, I. Nizovskii, and V.K. Duplyakin: Inorg. Mater., 2006, vol. 42(3), pp. 256–60.

    Article  CAS  Google Scholar 

  44. C.D.S. Tuck, J.A. Hunter, and G.M. Scamans: J. Electrochem. Soc., 1987, vol. 134(12), pp. 2970–81.

    Article  CAS  Google Scholar 

  45. D.O. Flamini and S.B. Saidman: J. Appl. Electrochem., 2008, vol. 38(5), pp. 663–68.

    Article  CAS  Google Scholar 

  46. J.U. Chavarin: Corrosion, 1991, vol. 47(6), pp. 472–79.

    Article  CAS  Google Scholar 

  47. R.P. Elliott and F.A. Shunk: Bull. Alloy Phase Diagr., 1980, vol. 1(1), pp. 73–76.

    Article  Google Scholar 

  48. D.G. Kolman, R. Chavarria, and R. Kolman: J. Testing Eval., 2010, vol. 30, pp. 452–56.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation Award Number DMR-2011166. The authors acknowledge the use of the Major Analytical Instrumentation Center (MAIC) and Nanoscale Research Facility (NRF) at the University of Florida.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Norkett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 103 KB)

Supplementary file 2 (MP4 16688 KB)

Supplementary file 3 (MP4 10630 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norkett, J.E., Anthony, B.T. & Miller, V.M. Multiplicity and Separability of the Mechanisms of Liquid Metal Embrittlement in the Ga–In–Al System. Metall Mater Trans A 54, 2791–2802 (2023). https://doi.org/10.1007/s11661-023-07056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07056-2

Navigation