Skip to main content
Log in

Numerical Assessment on Effects of Longitudinal Slots and Its Application in Aluminium Reduction Cells

  • Bauxite to Aluminum: Advances, Automation, and Alternative Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of longitudinal slots on gas evolution and bubble-driven flow in Hall–Héroult cells by a computational fluid dynamics (CFD) model have been investigated. A similar flow pattern in the anode-to-cathode distance (ACD) or spacing was shown between unslotted and slotted cases, but more complex local flow and gas evolution behavior beneath the anodes are derived from the slots. The gas accumulates in the slots/anode gaps and is released from these paths, and over 50% of gas bubbles escape from the slot tops in the slotted case. The design of the current applied slots in smelters was optimized based on CFD simulations, and it was shown that a trisected slotted design along the width direction produced the minimum ‘gas holdup’ in the ACD regions. The effects of the slot-inclined direction on bath flow and gas holdup were further investigated to quantitatively evaluate the easily made mis-operation in the anode change process during commercial production. Based on the findings of this analysis, using the horizontal slot design instead of the current typical inclined slot design is recommended, as it avoids the issue of operator error while still providing a similar benefit to the inclined slots. At the end of this paper, an industrial application of slotted anodes is discussed as an example to indicate that the slotted anode technology should be carefully applied, especially for smelters with poor quality anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Zhao, B. Gao, Y. Feng, Y. Huang, Z. Wang, Z. Shi, and X. Hu, JOM 69, 281 (2017).

    Article  Google Scholar 

  2. Y. Liu and J. Li, Modern Aluminum Electrolysis, 1st ed. (Beijing: Metallurgical Industry Press, 2008).

    Google Scholar 

  3. N. Zhou, X. Xia, and F. Wang, J. Cent. South. Univ. Technol. 14, 42 (2007).

    Article  Google Scholar 

  4. J.J.J. Chen, K. Qian, and J. Zhao, IchemE 79, 383 (2001).

    Article  Google Scholar 

  5. X. Wang, G. Tarcy, S. Whelan, S. Porto, C. Ritter, B. Ouellet, G. Homley, A. Morphett, G. Proulx, S. Lindsay, and J. Bruggeman, Light Metals 2007, ed. M. SØrlie (Warrendale: TMS, 2007), pp. 539–544.

    Google Scholar 

  6. S. Poncsak, L.I. Kiss, D. Toulouse, A. Perron, and S. Peron, Light Metals, 2006, ed. T.J. Galloway (Warrendale: TMS, 2006), pp. 457–462.

    Google Scholar 

  7. W. Yang and M.A. Cooksey, Light Metals 2007, ed. M. SØrlie (Warrendale: TMS, 2007), pp. 451–456.

    Google Scholar 

  8. S. Zhan, Y. Huang, Z. Wang, C. Li, J. Yang, and J. Wang, JOM 1, 23 (2019).

    Article  Google Scholar 

  9. H.P. Dias and R.R. Moura, Light Metals, 2005, ed. H. Kvande (Warrendale: TMS, 2005), pp. 341–344.

    Google Scholar 

  10. S.C. Tandon and R.N. Prasad, Light Metals, 2005, ed. H. Kvande (Warrendale: TMS, 2005), pp. 303–309.

    Google Scholar 

  11. M.W. Meier, R.C. Perruchoud, and W.K. Fischer, Light Metals, 2007, ed. M. SØrlie (Warrendale: TMS, 2007), pp. 277–282.

    Google Scholar 

  12. G. Bearne, D. Gadd, and S. Lix, Light Metals, 2007, ed. M. SØrlie (Warrendale: TMS, 2007), pp. 305–310.

    Google Scholar 

  13. M. Sun, B. Li, L. Li, Q. Wang, J. Peng, Y. Wang, and S.C.P. Cheung, Metall. Mater. Trans. B 48B, 3161 (2017).

    Article  Google Scholar 

  14. Y. Xu, H. Zhang, J. Li, and Y. Lai, JOM 65, 1459 (2013).

    Article  Google Scholar 

  15. K.E. Einarsrud, I. Eick, W. Bai, Y. Feng, J. Hua, and P.J. Witt, Appl. Math. Model. 44, 3 (2017).

    Article  MathSciNet  Google Scholar 

  16. N. Yang, J. Chen, H. Zhao, W. Ge, and J. Li, Chem. Eng. Sci. 62, 6978 (2007).

    Article  Google Scholar 

  17. M.P. Schwarz, P.T.L. Koh, D.I. Verrelli, and Y. Feng, Miner. Eng. 90, 2 (2016).

    Article  Google Scholar 

  18. Y. Feng, M.P. Schwarz, W. Yang, and M. Cooksey, Metall. Mater. Trans. B 46B, 1956 (2015).

    Google Scholar 

  19. Y. Feng, W. Yang, M. Cooksey, and P. Schwarz, J. Comput. Multiphas. Flow. 2, 179 (2010).

    Article  Google Scholar 

  20. W. Liu, H. Hu, D. Zhou, X. Yang, Y. Feng, and P. Witt, Light Metals 1, 25 (2016).

    Google Scholar 

  21. F. Yan, M. Dupuis, J. Zhou, and S. Ruan, Light Metals, ed. B. Sadler (Warrendale: TMS, 2013), pp. 537–542.

    Google Scholar 

  22. P.J. Side and C.W. Tobias, J. Electrochem. Soc. 129, 2715 (1982).

    Article  Google Scholar 

  23. G.J. Houston, M.P. Taylor, and D.J. Williams, Light Metals, 1988, ed. L.G. Boxall (Warrendale: TMS, 1988), pp. 641–645.

    Google Scholar 

  24. A. Solheim and J. Thonstad, Light Metals, 1986, ed. R.E. Miller (Warrendale: TMS, 1986), pp. 397–403.

    Google Scholar 

  25. M.A. Cooksey, M.P. Taylor, and J.J.J. Chen, JOM 60, 51 (2008).

    Article  Google Scholar 

  26. N. Feng, Aluminum Electrolysis, 1st ed. (Beijing: Chemical Industry Press, 2006).

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support by the National Natural Science Foundation of China (No. 51434005, No. 51529401), CHALCO Young Science and Technology Development Funds (2018MXJH13), and National High-tech R&D Program (863 Program) of China (No. 2009AA064501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhou, D., Liu, W. et al. Numerical Assessment on Effects of Longitudinal Slots and Its Application in Aluminium Reduction Cells. JOM 72, 218–228 (2020). https://doi.org/10.1007/s11837-019-03891-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03891-0

Navigation