Skip to main content
Log in

Effect of Cr/Al Atomic Ratio on the Oxidation Resistance in 1200°C Steam for the CrAlSiN Coatings Deposited on Zr Alloy Substrates

  • Ceramic Materials for Nuclear Energy Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Cr-based physical vapor deposition coatings have been considered as having the potential to enhance the accident tolerance of Zr alloy fuel claddings. Comparative studies on the high-temperature oxidation behavior were conducted on the Zr alloy coupons that were coated with magnetron-sputtered CrAlSiN quaternary coatings with various Cr/Al atomic ratios. It has been found that the oxidation resistance and the external scale are closely associated with the Cr/Al atomic ratio. A Cr/Al ~ 3.1 coating provided effective protection for its Zr alloy substrate in 1200°C steam for 6 h, where a dense and homogeneous Cr2O3/α-Al2O3 bilayer scale was evidenced in the whole process. However, for Cr/Al ~ 1.3 and the Cr/Al ~ 0.6 coatings, their oxidation resistance was greatly degenerated, because of the forming of brittle α-Al2O3-rich scales. The results demonstrate that the Cr/Al atomic ratio is crucial to the protective capability of CrAlSiN coatings for Zr alloy coupons in high-temperature steam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.C. Tang, M. Stueber, and H.J. Seifert, Corros. Rev. 35, 141 (2017).

    Article  Google Scholar 

  2. L. Hallstadius, S. Johnson, and E. Lahoda, Prog. Nucl. Energy 57, 71 (2012).

    Article  Google Scholar 

  3. H.G. Kim, I.-H. Kim, J.H. Park, and Y.H. Koo, ASTM 17th International Symposium on Zirconium in the Nuclear Industry (India, 2014).

  4. H.-G. Kim, I.-H. Kim, Y.-I. Jung, D.-J. Park, J.-Y. Park, and Y.-H. Koo, J. Nucl. Mater. 465, 531 (2015).

    Article  Google Scholar 

  5. J.C. Brachet, I. Idarraga-Trujillo, M. Le Flem, M. Le Saux, V. Vandenberghe, S. Urvoy, E. Rouesne, T. Guilbert, C. Toffolon-Masclet, M. Tupin, C. Phalippou, F. Lomello, F. Schuster, A. Billard, G. Velisa, C. Ducros, and F. Sanchette, J. Nucl. Mater. 517, 268 (2019).

    Article  Google Scholar 

  6. A.S. Kuprin, V.A. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, and P.N. V’Yugov, J. Nucl. Mater. 465, 400 (2015).

    Article  Google Scholar 

  7. Y.D. Wang, W.C. Zhou, Q.L. Wen, X.C. Ruan, F. Luo, G.H. Bai, Y.C. Qing, D.M. Zhu, Z.B. Huang, Y.W. Zhang, T. Li, and R. Li, Surf. Coat. Technol. 344, 141 (2018).

    Article  Google Scholar 

  8. E.J. Opila, N.S. Jacobson, D.L. Myers, and E.H. Copland, JOM 58, 22 (2006).

    Article  Google Scholar 

  9. X.G. Hu, C. Dong, Q. Wang, B.Q. Chen, H.Y. Yang, T.G. Wei, R.Q. Zhang, W. Gu, and D.M. Chen, J. Nucl. Mater. 519, 145 (2019).

    Article  Google Scholar 

  10. M.P. Brady, B. Gleeson, and I.G. Wright, JOM 52, 16 (2000).

    Article  Google Scholar 

  11. R. Prescott and M.J. Graham, Oxid. Met. 38, 233 (1992).

    Article  Google Scholar 

  12. C.S. Giggins and F.S. Pettit, J. Electrochem. Soc. 118, 1782 (1971).

    Article  Google Scholar 

  13. Z.Y. Liu, W. Gao, K.L. Dahm, and F.H. Wang, Acta Mater. 46, 1691 (1998).

    Article  Google Scholar 

  14. W.C. Zhong, P.A. Mouche, X.C. Han, B.J. Heuser, K.K. Mandapaka, and G.S. Was, J. Nucl. Mater. 470, 327 (2016).

    Article  Google Scholar 

  15. M. Zhu, M.S. Li, and Y.C. Zhou, Surf. Coat. Technol. 201, 2878 (2006).

    Article  Google Scholar 

  16. T.C. Rojas, S. Dominguez-Meister, M. Brizuela, and J.C. Sanchez-Lopez, J. Alloys Compd. 773, 1172 (2019).

    Article  Google Scholar 

  17. S. Hofmann and H.A. Jehn, Werkst. Korros.-Mater. Corros. 41, 756 (1990).

    Article  Google Scholar 

  18. Y. Dong, F.F. Ge, F.P. Meng, and G.S. Zhao, Surf. Coat. Technol. 350, 841 (2018).

    Article  Google Scholar 

  19. J. Carr, G. Vasudevamurthy, L. Snead, B. Hinderliter, and C. Massey, J. Mater. Eng. Perform. 25, 2347 (2016).

    Article  Google Scholar 

  20. C. Boulesteix, B. Gregoire, and F. Pedraza, Surf. Coat. Technol. 326, 224 (2017).

    Article  Google Scholar 

  21. A.E. Kudryashov, A.Y. Potanin, D.N. Lebedev, I.V. Sukhorukova, D.V. Shtansky, and E.A. Levashov, Surf. Coat. Technol. 285, 278 (2016).

    Article  Google Scholar 

  22. F. Meng, B. Wang, F. Ge, and F. Huang, Surf. Coat. Technol. 213, 77 (2012).

    Article  Google Scholar 

  23. Y. Dong, H. Zhu, F.F. Ge, G.S. Zhao, and F. Huang, Surf. Coat. Technol. 374, 393 (2019).

    Article  Google Scholar 

  24. I. Petrov, P.B. Barna, L. Hultman, and J.E. Greene, J. Vac. Sci. Technol., A 21, S117 (2003).

    Article  Google Scholar 

  25. C.C. Tang, M. Steinbrueck, M. Stueber, M. Grosse, X.J. Yu, S. Ulrich, and H.J. Seifert, Corros. Sci. 135, 87 (2018).

    Article  Google Scholar 

  26. K. Daub, S.Y. Persaud, and R.B. Rebak, Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power SystemsWater Reactors (2017).

  27. J.C. Brachet, M. Dumerval, V. Lezaud-Chaillioux, M. Le Saux, E. Rouesne, D. Hamon, S. Urvoy, and T. Guilbert, Behavior of Chrominum Coated M5TM Claddings Under LOCA Conditions (Jeju Island, Korea, 2017).

  28. B. Jonsson and A. Westerlund, Oxid. Met. 88, 315 (2017).

    Article  Google Scholar 

  29. S.Y. Liu, Y. Yang, F.L. Ng, R. Ji, and X.T. Zeng, Surf. Coat. Technol. 320, 357 (2017).

    Article  Google Scholar 

  30. C.Y. Meng, L. Yang, Y.W. Wu, J. Tan, W.A. Dang, X.J. He, and X.F. Ma, J. Nucl. Mater. 515, 354 (2019).

    Article  Google Scholar 

  31. S. Mato, G. Alcala, and M. Brizuela, Corros. Sci. 80, 453 (2014).

    Article  Google Scholar 

  32. A.N. Aphale, B.X. Hu, M. Reisert, A. Pandey, and P. Singh, JOM 71, 116 (2019).

    Article  Google Scholar 

  33. N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals (New York: Cambridge University Press, 2006), p. 4.

    Book  Google Scholar 

  34. S. Hofmann and H.A. Jehn, Werkst. Korros. 41, 756 (1990).

    Article  Google Scholar 

  35. K.A. Terrani, J. Nucl. Mater. 501, 13 (2018).

    Article  Google Scholar 

  36. NEA, State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels (Paris: O. Publishing, 2018).

    Google Scholar 

  37. V. Dalbauer, J. Ramm, S. Kolozsvari, V. Paneta, C.M. Koller, and P.H. Mayrhofer, Surf. Coat. Technol. 352, 392 (2018).

    Article  Google Scholar 

  38. G.F. Chen and H.Y. Lou, Corros. Rev. 18, 195 (2000).

    Article  Google Scholar 

  39. F.H. Stott, G.C. Wood, and J. Stringer, Oxid. Met. 44, 113 (1995).

    Article  Google Scholar 

  40. M. Negami, S. Hibino, A. Kawano, Y. Nomura, R. Tanaka, and K. Igashira, ASME Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition (New York, 2017).

  41. P.P. Zhao, M.L. Shen, Y. Gu, S.L. Zhu, and F.H. Wang, Corros. Sci. 126, 317 (2017).

    Article  Google Scholar 

  42. R. Van Nieuwenhove, V. Andersson, J. Balak, and B. Oberlander, Zirconium in the Nuclear Industry: 18th International Symposium (West Conshohocken, 2018).

Download references

Acknowledgements

This research is supported by the National Key Research and Development Program of China (2016YFB0700104), and the National Natural Science Foundation of China (No. 51871231).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yi or Fangfang Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Liu, H., Huang, F. et al. Effect of Cr/Al Atomic Ratio on the Oxidation Resistance in 1200°C Steam for the CrAlSiN Coatings Deposited on Zr Alloy Substrates. JOM 71, 4839–4847 (2019). https://doi.org/10.1007/s11837-019-03839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03839-4

Navigation