Skip to main content
Log in

Effect of Bias Voltage on the Microstructure, Mechanical Properties, and High-Temperature Steam Oxidation Behavior of Cr Coatings Prepared by Magnetron Sputtering on Zircaloy-4 Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigated the effect of bias voltage on the microstructure, mechanical properties, and high-temperature steam oxidation behavior of the Cr coatings on the Zircaloy-4 alloy. By changing the bias voltage (0, − 50, − 100, − 150 V), Cr coatings with different orientations, including (110), (200), and (211), were obtained. Among these different samples, the Cr coating deposited at − 50 V exhibited a highly (211) preferred orientation, the lowest surface roughness, the highest deposition rate, and the best mechanical properties. Furthermore, after steam oxidation at 1200 °C for 30 min, the Cr coating with a (211) preferred orientation demonstrated superior oxidation resistance compared to those with (110) and (100) preferred orientations. This research is expected to provide new guidance for optimizing the structural design of Cr-coated nuclear fuel cladding, thereby extending accident tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. I.C. Sang and J.H. Kim, Radiation-Induced Dislocation and growth behavior of Zirconium and Zirconium Alloys: A Review, Nucl. Eng. Technol., 2013, 45, p 358–392. https://doi.org/10.5516/NET.07.2013.035

    Article  CAS  Google Scholar 

  2. R. Krishnan and M.K. Asundi, Zirconium Alloys in Nuclear Technology, Proc. Indian Acad. Sci. (Eng. Sci.), 1981, 4, p 41–56. https://doi.org/10.1007/BF02843474

    Article  CAS  Google Scholar 

  3. K.A. Terrani, Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges, J. Nucl. Mater., 2018, 501, p 13–30. https://doi.org/10.1016/j.jnucmat.2017.12.043

    Article  CAS  Google Scholar 

  4. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott and L.L. Snead, Accident Tolerant Fuels for LWRs: A Perspective, J. Nucl. Mater., 2014, 448, p 374–379. https://doi.org/10.1016/j.jnucmat.2013.12.005

    Article  CAS  Google Scholar 

  5. H.G. Kim, J.H. Yang, W.J. Kim and Y.H. Koo, Development Status of Accident-Tolerant Fuel for Light Water Reactors in Korea, Nucl. Eng. Technol., 2016, 48, p 1–15. https://doi.org/10.1016/j.net.2015.11.011

    Article  Google Scholar 

  6. K.A. Gamble, T. Barani, D. Pizzocri, J.D. Hales, K.A. Terrani and G. Pastore, An Investigation of FeCrAl Cladding Behavior under Normal Operating and Loss of Coolant Conditions, J. Nucl. Mater., 2017, 491, p 55–66. https://doi.org/10.1016/j.jnucmat.2017.04.039

    Article  CAS  Google Scholar 

  7. X.X. Hu, K.A. Terrani, B.D. Wirth and L.L. Snead, Hydrogen Permeation in FeCrAl Alloys for LWR Cladding Application, J. Nucl. Mater., 2015, 461, p 282–291. https://doi.org/10.1016/j.jnucmat.2015.02.040

    Article  CAS  Google Scholar 

  8. D.J. Park, H.G. Kim, J.Y. Park, Y.I. Jung, J.H. Park and Y.H. Koo, A Study of the Oxidation of FeCrAl Alloy in Pressurized Water and High-temperature Steam Environment, Corros. Sci., 2015, 94, p 459–465. https://doi.org/10.1016/j.corsci.2015.02.027

    Article  CAS  Google Scholar 

  9. X. Wu, T. Kozlowski and J.D. Hales, Neutronics and Fuel Performance Evaluation of Accident Tolerant FeCrAl Cladding under Normal Operation Conditions, Ann. Nucl. Energy., 2015, 85, p 763–775. https://doi.org/10.1016/j.anucene.2015.06.032

    Article  CAS  Google Scholar 

  10. M. Ben-Belgacem, V. Richet, K.A. Terrani, Y. Katoh and L.L. Snead, Thermo-mechanical Analysis of LWR SiC/SiC Composite Cladding, J. Nucl. Mater., 2014, 447, p 125–142. https://doi.org/10.1016/j.jnucmat.2014.01.006

    Article  CAS  Google Scholar 

  11. C.P. Deck, G.M. Jacobsen, J. Sheeder, O. Gutierrez, J. Zhang, J. Stone, H.E. Khalifa and C.A. Back, Characterization of SiC–SiC Composites for Accident Tolerant Fuel Cladding, J. Nucl. Mater., 2015, 466, p 667–681. https://doi.org/10.1016/j.jnucmat.2015.08.020

    Article  CAS  Google Scholar 

  12. B. Cheng, Y.J. Kim and P. Chou, Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding, Nucl. Eng. Technol., 2016, 48, p 16–25. https://doi.org/10.1016/j.net.2015.12.003

    Article  Google Scholar 

  13. N. Kim, H.H. Son and S.J. Kim, Oxidation Effect on Pool Boiling Critical Heat Flux Enhancement of Cr-coated Surface for Accident-tolerant Fuel Cladding Application, Int. J. Heat Mass Transfer., 2019, 144, p 118655. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118655

    Article  CAS  Google Scholar 

  14. H. Yeom, B. Maier, G. Johnson, D. Tyler, L.L. Mia and K. Sridharan, High Temperature Oxidation and Microstructural Evolution of Cold Spray Chromium Coatings on Zircaloy-4 in Steam Environments, J. Nucl. Mater., 2019, 526, p 151737. https://doi.org/10.1016/j.jnucmat.2019.151737

    Article  CAS  Google Scholar 

  15. T. Dabney, G. Johnson, H. Yeom, B. Maier, J. Walters and K. Sridharan, Experimental Evaluation of Cold Spray FeCrAl Alloys Coated Zirconium-Alloy for Potential Accident Tolerant Fuel Cladding, Nucl. Eng. Technol., 2019, 21, p 100715. https://doi.org/10.1016/j.nme.2019.100715

    Article  Google Scholar 

  16. D.L. Jin, N. Ni, Y. Guo, Z.H. Zou, X. Wang, F.W. Guo, X.F. Zhao and P. Xiao, Corrosion of the Bonding at FeCrAl/Zr Alloy Interfaces in Steam, J. Nucl. Mater., 2018, 508, p 411–422. https://doi.org/10.1016/j.jnucmat.2018.05.071

    Article  CAS  Google Scholar 

  17. K.A. Terrani, C.M. Parish, D.W. Shin and B.A. Pint, Protection of Zirconium by Alumina- and Chromia-forming Iron Alloys under High-temperature Steam Exposure, J. Nucl. Mater., 2013, 438, p 64–71. https://doi.org/10.1016/j.jnucmat.2013.03.006

    Article  CAS  Google Scholar 

  18. D.H. Kam, J.H. Lee, T. Lee and Y.H. Jeong, Critical Heat Flux for SiC- and Cr-coated Plates under Atmospheric Condition, Ann. Nucl. Energy., 2015, 76, p 335–342. https://doi.org/10.1016/j.anucene.2014.09.046

    Article  CAS  Google Scholar 

  19. J.G. Gigax, M. Kennas, H. Kim, T.Y. Wang, B.R. Maier, H. Yeom, G.O. Johnson, K. Sridharan and S. Lin, Radiation Response of Ti2AlC MAX Phase Coated Zircaloy-4 for Accident Tolerant Fuel Cladding, J. Nucl. Mater., 2019, 523, p 26–32. https://doi.org/10.1016/j.jnucmat.2019.05.021

    Article  CAS  Google Scholar 

  20. J.H. Sung, T.H. Kim and S.S. Kim, Fretting Damage of TiN Coated Zircaloy-4 Tube, Wear, 2001, 250, p 658–664. https://doi.org/10.1016/S0043-1648(01)00674-3

    Article  Google Scholar 

  21. J.S. Jiang, D.K. Zhan, J.N. Lv, X.F. Ma, X.J. He, D.Q. Wang, Y.Y. Hu, H.L. Zhai, J.J. Tu, W.J. Zhang and B. Wang, Comparative Study on the Tensile Cracking Behavior of CrN and Cr Coatings for Accident-tolerant Fuel Claddings, Surf. Coat. Technol., 2021, 409, p 126812. https://doi.org/10.1016/j.surfcoat.2020.126812

    Article  CAS  Google Scholar 

  22. K. Hilpert, M. Miller, D.H. Peck and R. Weiß, Chromium Vapor Species over Solid Oxide Fuel Cell Interconnect Materials and their Potential for Degradation Processes, J. Electrochem. Soc., 1996, 143, p 3642–3647. https://doi.org/10.1149/1.1837264

    Article  CAS  Google Scholar 

  23. F.F. Wang, F.X. Zhang, L.J. Zheng and H. Zhang, Structure and Corrosion Properties of Cr Coating Deposited on Aerospace Bearing Steel, Appl. Surf. Sci., 2017, 423, p 695–703. https://doi.org/10.1016/j.apsusc.2017.06.099

    Article  CAS  Google Scholar 

  24. H.Y. Liu, Y.J. Feng, Y.R. Yao, B.S. Li, R.D. Wang, X.G. Shi, P. Li, J. Shu, F. Huang, Q. Huang and F.F. Ge, Effect of the 345 °C and 16.5 MPa Autoclave Corrosion on the Oxidation Behavior of Cr-coated Zirconium Claddings in the High-temperature steam, Corros. Sci., 2021, 189, p 109608. https://doi.org/10.1016/j.corsci.2021.109608

    Article  CAS  Google Scholar 

  25. E.B. Kashkarov, D.V. Sidelev, N.S. Pushilina, J. Yang, C. Tang and M. Steinbrueck, Influence of Coating Parameters on Oxidation Behavior of Cr-coated Zirconium Alloy for Accident Tolerant Fuel Claddings, Corros. Sci., 2022, 203, p 110359. https://doi.org/10.1016/j.corsci.2022.110359

    Article  CAS  Google Scholar 

  26. E.B. Kashkarov, D.V. Sidelev, M. Rombaeva, M.S. Syrtanov and G.A. Bleykher, Chromium Coatings Deposited by Cooled and Hot Target Magnetron sputtering for Accident Tolerant Nuclear Fuel Claddings, Surf. Coat. Technol., 2020, 389, p 125618. https://doi.org/10.1016/j.surfcoat.2020.125618

    Article  CAS  Google Scholar 

  27. J.J. Olaya, S.E. Rodil, S. Muhl and E. Sánchez, Comparative Study of Chromium Nitride Coatings Deposited by Unbalanced and Balanced Magnetron Sputtering, Thin Solid Films, 2005, 474, p 119–126. https://doi.org/10.1016/j.tsf.2004.08.067

    Article  CAS  Google Scholar 

  28. Y. Meng, S. Zeng, Z. Teng, X.C. Han and H.B. Zhang, Control of the Preferential Orientation Cr Coatings Deposited on Zircaloy Substrates and Study of their Oxidation Behavior, Thin Solid Films, 2021, 730, p 138699. https://doi.org/10.1016/j.tsf.2021.138699

    Article  CAS  Google Scholar 

  29. P.J. Kelly and R.D. Arnell, Magnetron Sputtering: A Review of Recent Developments and Applications, Vacuum, 2000, 56, p 159–172. https://doi.org/10.1016/S0042-207X(99)00189-X

    Article  CAS  Google Scholar 

  30. Y. Wang, L.H. Wang, L.L. Shang, G.H. Bai, J.S. Li, F. Xue and W.J. Gong, Fiber Texture-dependent Oxidation Behaviour of Cr-coated Zirconium Alloy in High Temperature Steam, Corros. Sci., 2022, 205, p 110449. https://doi.org/10.1016/j.corsci.2022.110449

    Article  CAS  Google Scholar 

  31. D. Wang, R.H. Zhong, Y.P. Zhang, P. Chen, Y.C. Lan, J. Yu, G.H. Su, S.Z. Qiu and W.X. Tian, Isothermal Experiments on Steam Oxidation of Magnetron-sputtered Chromium-Coated Zirconium Alloy Cladding at 1200 °C, Corros. Sci., 2022, 206, p 110544. https://doi.org/10.1016/j.corsci.2022.110544

    Article  CAS  Google Scholar 

  32. H. Yeom, T. Dabney, G. Johnson, B. Maier, M. Lenling and K. Sridharan, Improving Deposition Efficiency in Cold Spraying Chromium Coatings by Powder Annealing, Int. J. Adv. Des. Manuf. Technol., 2019, 100, p 1373–1382. https://doi.org/10.1007/s00170-018-2784-1

    Article  Google Scholar 

  33. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park and Y.H. Koo, Adhesion Property and High-temperature Oxidation Behavior of Cr-coated Zircaloy-4 Cladding Tube Prepared by 3D Laser Coating, J. Nucl. Mater., 2015, 465, p 531–539. https://doi.org/10.1016/j.jnucmat.2015.06.030

    Article  CAS  Google Scholar 

  34. T.G. Wei, R.Q. Zhang, H.Y. Yang, H. Liu, S.Y. Qiu, Y. Wang, P.N. Du, K. He, X.G. Hu and C. Dong, Microstructure, Corrosion Resistance and Oxidation Behavior of Cr-coatings on Zircaloy-4 Prepared by Vacuum ARC Plasma Deposition, Corros. Sci., 2019, 158, p 108077. https://doi.org/10.1016/j.corsci.2019.06.029

    Article  CAS  Google Scholar 

  35. H.B. Ma, J. Yan, Y.H. Zhao, T. Liu, Q.S. Ren, Y.H. Liao, J.D. Zuo, G. Liu and M.Y. Yao, Oxidation Behavior of Cr-coated Zirconium Alloy Cladding in High-temperature Steam Above 1200°C, npj Mater. Degrad., 2021, 5, p 7. https://doi.org/10.1038/s41529-021-00155-8

    Article  CAS  Google Scholar 

  36. J.M. Zhang, F. Ma and K.W. Xu, Calculation of the Surface Energy of BCC Metals by using the Modified Embedded-Tom Method, Surf. Interface Anal., 2003, 35, p 662–666. https://doi.org/10.1002/sia.1587

    Article  CAS  Google Scholar 

  37. M. Hänsel, W.J. Quadakkers and D.J. Young, Role of Water Vapor in Chromia-Scale Growth at Low Oxygen Partial Pressure, Oxid. Met., 2003, 59, p 285–301. https://doi.org/10.1023/A:1023040010859

    Article  Google Scholar 

  38. S.C. Tsai, A.M. Huntz and C. Dolin, Growth Mechanism of Cr2O3 Scales: Oxygen and Chromium Diffusion, Oxidation Kinetics and Effect of Yttrium, Mater. Sci. Eng. A., 1996, 212, p 6–13. https://doi.org/10.1016/0921-5093(96)10173-8

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Joint Funds for Regional Innovation Development of the National Natural Science Foundation of China (Grant No. U20A20232), the Chongqing Yingcai Plan Project (cstc2021ycjh-bgzxm0176, cstc2021ycjh-bgzxm0174), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJQN202101316, KJQN201901340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijiu Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 842 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Ruan, H., Huang, W. et al. Effect of Bias Voltage on the Microstructure, Mechanical Properties, and High-Temperature Steam Oxidation Behavior of Cr Coatings Prepared by Magnetron Sputtering on Zircaloy-4 Alloy. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08554-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08554-5

Keywords

Navigation