, Volume 71, Issue 11, pp 3931–3940 | Cite as

Use of Biochar for Sustainable Ferrous Metallurgy

  • Lei Ye
  • Zhiwei PengEmail author
  • Liancheng Wang
  • Anton Anzulevich
  • Igor Bychkov
  • Dmitrii Kalganov
  • Huimin Tang
  • Mingjun Rao
  • Guanghui Li
  • Tao Jiang
Sustainable Pyrometallurgical Processing


Biochar has been extensively used in ferrous metallurgy in recent years as it has comparable metallurgical properties to coke and coal, showing great potential for reduction of the production cost of iron and steel with enhanced quality and for promotion of environmental protection. This article reviewed the main applications of biochar in the iron and steel industry, including its use in coking, iron ore sintering, production of metallized pellets, blast furnace ironmaking, and electric arc furnace steelmaking. The challenges of using biochar and corresponding promising measures were also discussed for sustainable development of the industry.



This work was partially supported by the National Natural Science Foundation of China under Grants 51811530108, 51504297, 51881340420, and 51774337, the Natural Science Foundation of Hunan Province, China under Grant 2017JJ3383, the Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources under Grant 2014-405, the Guangdong Guangqing Metal Technology Co. Ltd. under Grant 738010210, the Innovation-Driven Program of Central South University under Grant 2016CXS021, the Shenghua Lieying Program of Central South University under Grant 502035001, the Fundamental Research Funds for the Central Universities of Central South University under Grants 2018zzts798, 2018zzts779, 2018zzts220, 2018zzts222, 2019zzts174, and 2019zzts706, the Russian Foundation for Basic Research under Grants 18-58-53055 GFENa and 16-29-14045 ofim, and Act 211 of the Government of the Russian Federation (contract no. 02.A03.21.0011).


  1. 1.
  2. 2.
    E. Abdelaziz, R. Saidur, and S. Mekhilef, Renew. Sustain. Energy Rev. 15, 150 (2011).CrossRefGoogle Scholar
  3. 3. Accessed 22 Mar 2019.
  4. 4.
    T. Brown, A. Gambhir, N. Florin, and P. Fennell, Briefing Paper 7 (2012).Google Scholar
  5. 5. Accessed 27 Feb 2019.
  6. 6.
  7. 7.
    J.G. Mathieson, M.A. Somerville, A. Deev, and S. Jahanshahi, Iron Ore 34, 581 (2015).CrossRefGoogle Scholar
  8. 8.
    K. Isnugroho, D.C. Birawidha, and Y. Hendronursito, in Conference on Fundamental & Applied Science for Advanced Technology (2016).Google Scholar
  9. 9.
    R. Lovel, K. Vining, and M. Dell’Amico, Miner. Process. Extr. Metall. 116, 85 (2007).CrossRefGoogle Scholar
  10. 10.
    X. Fan, Z. Ji, M. Gan, X. Chen, and T. Jiang, Fuel Process. Technol. 150, 1 (2016).CrossRefGoogle Scholar
  11. 11.
    C. Luan, C. You, and D. Zhang, Energy 69, 562 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Meyers and R.F. Jennings, SEAISI Q. 38 (1979).Google Scholar
  13. 13.
    J. Ren, F. Li, Q. Li, and Z. Qiu, in Proceedings of the 9th Asia-Pacific International Symposium on Combustion and Energy Utilization (2007).Google Scholar
  14. 14.
    A. Babich, D. Senk, and M. Fernandez, ISIJ Int. 50, 81 (2010).CrossRefGoogle Scholar
  15. 15.
    M. Gan, X. Fan, X. Chen, Z. Ji, Y. Wang, Z. Yu, and T. Jiang, ISIJ Int. 52, 1574 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, and Y.S. Ok, Chemosphere 99, 19 (2014).CrossRefGoogle Scholar
  17. 17.
    M. Li, Y. Tang, N. Ren, Z. Zhang, and Y. Cao, J. Clean. Prod. 172, 3342 (2018).CrossRefGoogle Scholar
  18. 18.
    D. Woolf, J.E. Amonette, F.A. Street-Perrott, J. Lehmann, and S. Joseph, Nat. Commun. 1, 1 (2010).CrossRefGoogle Scholar
  19. 19.
    H. Konishi, K. Ichikawa, and T. Usui, ISIJ Int. 50, 386 (2010).CrossRefGoogle Scholar
  20. 20.
    A.V. Bridgwater, Int. J. Glob. Energy Issues 27, 160 (2007).CrossRefGoogle Scholar
  21. 21.
    W. Yan, T.C. Acharjee, C.J. Coronella, and V.R. Vasquez, Environ. Prog. Sustain. 28, 435 (2009).CrossRefGoogle Scholar
  22. 22.
    M.J. Antal and M. Gronli, Ind. Eng. Chem. Res. 42, 1619 (2003).CrossRefGoogle Scholar
  23. 23.
  24. 24.
    W.J. Desisto, I.N. Hill, S.H. Beis, S. Mukkamala, J. Joseph, C. Baker, T.-H. Ong, E.A. Stemmler, M.C. Wheeler, B.G. Frederick, and A.V. Heiningen, Energy Fuels 24, 2642 (2010).CrossRefGoogle Scholar
  25. 25.
    A. Repo, M. Tuomi, and J. Liski, GCB Bioenergy 3, 107 (2011).CrossRefGoogle Scholar
  26. 26.
    E.J. Luoga, E.T.F. Witkowski, and K. Balkwill, Ecol. Econ. 35, 243 (2000).CrossRefGoogle Scholar
  27. 27.
    J.A. Libra, K.S. Ro, C. Kammann, A. Funke, N.D. Berge, Y. Neubauer, M.M. Titirici, C. Fuhner, O. Bens, J. Kern, and K.H. Emmerich, Biofuels 2, 71 (2011).CrossRefGoogle Scholar
  28. 28.
    H. Tsukashi, Bull. Chem. Soc. Jpn. 39, 460 (1966).CrossRefGoogle Scholar
  29. 29.
    T.R. Brown, M.M. Wright, and R.C. Brown, Biofuels Bioprod. Biorefin. 5, 54 (2011).CrossRefGoogle Scholar
  30. 30.
    S. Meyer, B. Glaser, and P. Quicker, Environ. Sci. Technol. 45, 9473 (2011).CrossRefGoogle Scholar
  31. 31.
    H. Kamyab, S. Chelliapan, R. Shahbazian-Yassar, M.F.M. Din, T. Khademi, A. Kumar, and S. Rezania, JOM 69, 1361 (2017).CrossRefGoogle Scholar
  32. 32.
    B.D. Flores, I.V. Flores, A. Guerrero, D.R. Orellana, J.G. Pohlmann, M.A. Diez, A.G. Borrego, E. Osório, and A.C.F. Vilela, Fuel Process. Technol. 155, 97 (2017).CrossRefGoogle Scholar
  33. 33.
    M.A. Díez, R. Alvarez, and C. Barriocanal, Int. J. Coal Geol. 50, 389 (2002).CrossRefGoogle Scholar
  34. 34.
    E. Mousa, C. Wang, J. Riesbeck, and M. Larsson, Renew. Sustain. Energy Rev. 65, 1247 (2016).CrossRefGoogle Scholar
  35. 35.
    J.A. Macphee, J.F. Gransden, L. Giroux, and J.T. Price, Fuel Process. Technol. 90, 16 (2009).CrossRefGoogle Scholar
  36. 36.
    K.W. Ng, L. Giroux, T. MacPhee, and T. Todoschuk, in AISTech 2012: Proceedings of the Iron & Steel Technology Conference (2012).Google Scholar
  37. 37.
    T. Kawaguchi and M. Hara, ISIJ Int. 53, 1599 (2013).CrossRefGoogle Scholar
  38. 38.
    X. Xing, H. Rogers, G. Zhang, K. Hockings, P. Zulli, A. Deev, J. Mathieson, and O. Ostrovski, Fuel Process. Technol. 157, 42 (2017).CrossRefGoogle Scholar
  39. 39.
    H. Suopajärvi, E. Dahl, A. Kemppainen, S. Gornostayev, A. Koskela, and T. Fabritius, Energies 10, 1850 (2017).CrossRefGoogle Scholar
  40. 40.
    K. Li, J. Zhang, M. Barati, R. Khanna, Z. Liu, J. Zhong, X. Ning, S. Ren, T. Yang, and V. Sahajwalla, Fuel 145, 202 (2015).CrossRefGoogle Scholar
  41. 41.
    K.W. Ng, J.A. MacPhee, L. Giroux, and T. Todoschuk, Fuel Process. Technol. 92, 801 (2011).CrossRefGoogle Scholar
  42. 42.
    M.A. Diez and A.G. Borrego, Fuel 113, 59 (2013).CrossRefGoogle Scholar
  43. 43.
    M.A. Diez, R. Alvarez, and M. Fernandez, Fuel 96, 306 (2012).CrossRefGoogle Scholar
  44. 44.
    A. Guerrero, M.A. Diez, and A.G. Borrego, Int. J. Coal Geol. 147–148, 105 (2015).CrossRefGoogle Scholar
  45. 45.
    M. Zandi, M. Martinez-Pacheco, and T.A.T. Fray, Miner. Eng. 23, 1139 (2010).CrossRefGoogle Scholar
  46. 46.
    R.P. Bahgat, U.S. Chattoraj, and S.K. Sil, ISIJ Int. 46, 1728 (2006).CrossRefGoogle Scholar
  47. 47.
    H. Kokubu, T. Kodama, H. Itaya, and Y. Oguchi, ISIJ Int. 26, 182 (1986).CrossRefGoogle Scholar
  48. 48.
    K. Higuchi and R. Heerema, Miner. Eng. 16, 463 (2003).CrossRefGoogle Scholar
  49. 49.
    L. Xiong, Z. Peng, F. Gu, L. Ye, L. Wang, M. Rao, Y. Zhang, G. Li, and T. Jiang, Powder Technol. 340, 131 (2018).CrossRefGoogle Scholar
  50. 50.
    X. Fan, J. Meng, X. Chen, J. Zhuang, Y. Li, and L. Yuan, J. Cent. South Univ. 39, 1125 (2008).Google Scholar
  51. 51.
    G.C. Abreu, J.A.D. Carvalho, B.E.C.D. Silva, and R.H. Pedrini, J. Clean. Prod. 101, 387 (2015).CrossRefGoogle Scholar
  52. 52.
    X. Fan, Z. Ji, M. Gan, X. Chen, L. Yin, and T. Jiang, ISIJ Int. 55, 521 (2015).CrossRefGoogle Scholar
  53. 53.
    L. Lu, M. Adam, M. Kilburn, S. Hapugoda, M. Somerville, S. Jahanshahi, and J.G. Mathieson, ISIJ Int. 53, 1607 (2013).CrossRefGoogle Scholar
  54. 54.
    X. Chen, Y. Huang, M. Gan, X. Fan, Z. Yu, and L. Yuan, J. Iron Steel Res. Int. 22, 1107 (2015).CrossRefGoogle Scholar
  55. 55.
    Z. Cheng, Y. Jian, Z. Lang, Y. Liu, Z. Guo, and Q. Wang, Energy Convers. Manag. 125, 254 (2016).CrossRefGoogle Scholar
  56. 56.
    T. Ariyama, R. Murai, and M. Sato, ISIJ Int. 10, 1371 (2005).CrossRefGoogle Scholar
  57. 57.
    S. Ueda, K. Watanabe, K. Yanagiya, T. Murakami, R. Inoue, and T. Ariyama, ISIJ Int. 10, 1505 (2009).CrossRefGoogle Scholar
  58. 58.
    H. Mizoguchi, H. Suzuki, and S. Hayashi, ISIJ Int. 8, 1247 (2011).CrossRefGoogle Scholar
  59. 59.
    Y. Zhang, D. Duan, Z. You, G. Li, X. Fan, and T. Jiang, in 4th International Symposium on High-Temperature Metallurgical Processing (2013).Google Scholar
  60. 60.
    L. Ye, Z. Peng, L. Wang, A. Anzulevich, I. Bychkov, H. Tang, M. Rao, Y. Zhang, G. Li, and T. Jiang, Powder Technol. 338, 365 (2018).CrossRefGoogle Scholar
  61. 61.
    J.G. Mathieson, H. Rogers, M.A. Somerville, and S. Jahanshahi, ISIJ Int. 52, 1489 (2012).CrossRefGoogle Scholar
  62. 62.
    P.L. Hooey, A. Bodén, C. Wang, C.E. Grip, and B. Jansson, ISIJ Int. 50, 924 (2010).CrossRefGoogle Scholar
  63. 63.
    J.H. Noldin, in Proceeding of 6th European Coke and Ironmaking Congress (2011).Google Scholar
  64. 64.
    H. Suopajärvi, K. Umeki, E. Mousa, A. Hedayati, H. Romar, A. Kemppainen, C. Wang, A. Phounglamcheik, S. Tuomikoski, N. Norberg, A. Andefors, M. Öhman, U. Lassi, and T. Fabritius, Appl. Energy 213, 384 (2018).CrossRefGoogle Scholar
  65. 65.
    C. Wang, P. Mellin, J. Lövgren, L. Nilsson, W. Yang, H. Salman, A. Hultgren, and M. Larsson, Energy Convers. Manag. 102, 217 (2015).CrossRefGoogle Scholar
  66. 66.
    C. Feliciano-Bruzual and J.A. Mathews, Rev. Metal. Madrid. 49, 458 (2013).CrossRefGoogle Scholar
  67. 67.
    G. Fick, O. Mirgaux, P. Neau, and F. Patisson, Waste Biomass Valoriz. 5, 43 (2014).CrossRefGoogle Scholar
  68. 68.
    T. Norgate and D. Langberg, ISIJ Int. 49, 587 (2009).CrossRefGoogle Scholar
  69. 69.
    A. Cores, A. Babich, M. Muniz, A. Isidro, S. Ferreira, and R. Martin, Ironmak. Steelmak. 34, 231 (2007).CrossRefGoogle Scholar
  70. 70.
    J.G.M.S. Machado, E. Osório, and C.F. Vilela, Mater. Res. 13, 287 (2010).CrossRefGoogle Scholar
  71. 71.
  72. 72.
    F. Hanrot, D. Sert, J. Delinchant, R. Pietruck, T. Bürgler, A. Babich, M. Fernández, R. Alvarez, and M.A. Diez, in Proceeding of 1st Spanish National Conference on Advances in Materials Recycling and Eco-Energy (2009).Google Scholar
  73. 73.
    A. Kasai and Y. Matsui, ISIJ Int. 44, 2073 (2004).CrossRefGoogle Scholar
  74. 74.
    Y. Ujisawa, K. Nakano, Y. Matsukura, K. Sunahara, S. Komatsu, and T. Yamamoto, ISIJ Int. 45, 1379 (2005).CrossRefGoogle Scholar
  75. 75.
    V. Zaharia and R. Sahajwalla, ISIJ Int. 49, 1513 (2009).CrossRefGoogle Scholar
  76. 76.
  77. 77.
    B. Fidalgo, C. Berrueco, and M. Millan, J. Anal. Appl. Pyrol. 113, 274 (2015).CrossRefGoogle Scholar
  78. 78.
    J. Mathieson, H. Rogers, M. Somerville, P. Ridgeway, and S. Jahanshahi, in Proceedings of 1st International Conference on Energy Efficiency and CO 2 Reduction in the Steel Industry (2011).Google Scholar
  79. 79.
    N.F.M. Yunos, M. Zaharia, M.A. Idris, D. Nath, R. Khanna, and V. Sahajwalla, Energy Fuels 26, 278 (2012).CrossRefGoogle Scholar
  80. 80.
    D. Thorsten, R. Tim, S. Marc, E. Thomas, and P. Herbert, Ironmak. Steelmak. 43, 564 (2016).CrossRefGoogle Scholar
  81. 81.
    H. Suopajärvi, E. Pongrácz, and T. Fabritius, Renew. Sustain. Energy Rev. 25, 511 (2013).CrossRefGoogle Scholar
  82. 82.
    H. Suopajärvi, A. Kemppainen, J. Haapakangas, and T. Fabritius, J. Clean. Prod. 148, 709 (2017).CrossRefGoogle Scholar
  83. 83.
    C. Feliciano-Bruzual, J. Mater. Res. Technol. 3, 233 (2014).CrossRefGoogle Scholar
  84. 84.
    M.J. Antal, K. Mochidzuki, and L.S. Paredes, Ind. Eng. Chem. Res. 42, 3690 (2003).CrossRefGoogle Scholar
  85. 85.
    M.J. Gronnow, V.L. Budarin, O. Mašek, K.N. Crombie, P.A. Brownsort, P.S. Shuttleworth, P.R. Hurst, and J.H. Clark, GCB Bioenergy 5, 144 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.Chelyabinsk State UniversityChelyabinskRussia
  3. 3.South Ural State UniversityChelyabinskRussia

Personalised recommendations