Skip to main content
Log in

Use of Biochar for Sustainable Ferrous Metallurgy

  • Sustainable Pyrometallurgical Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Biochar has been extensively used in ferrous metallurgy in recent years as it has comparable metallurgical properties to coke and coal, showing great potential for reduction of the production cost of iron and steel with enhanced quality and for promotion of environmental protection. This article reviewed the main applications of biochar in the iron and steel industry, including its use in coking, iron ore sintering, production of metallized pellets, blast furnace ironmaking, and electric arc furnace steelmaking. The challenges of using biochar and corresponding promising measures were also discussed for sustainable development of the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from Ref. 6

Fig. 2

Reprinted with permission from Ref. 29

Fig. 3

Reprinted with permission from Ref. 36

Fig. 4

Reprinted with permission from Ref. 15

Fig. 5
Fig. 6

Reprinted with permission from Ref. 64

Fig. 7

Reprinted with permission from Ref. 65

Similar content being viewed by others

References

  1. https://www.worldsteel.org/media-centre/press-releases/2019/Global-crude-steel-output-increases-by-4.6–in-2018.html. Accessed 9 Feb 2019.

  2. E. Abdelaziz, R. Saidur, and S. Mekhilef, Renew. Sustain. Energy Rev. 15, 150 (2011).

    Article  Google Scholar 

  3. https://www.worldsteel.org. Accessed 22 Mar 2019.

  4. T. Brown, A. Gambhir, N. Florin, and P. Fennell, Briefing Paper 7 (2012).

  5. https://www.worldsteel.org/. Accessed 27 Feb 2019.

  6. http://hub.globalccsinstitute.com/sites/default/files/publications/15671/global-technology-roadmap-ccs-%20industry-steel-sectoral-report.pdf. Accessed 1 Feb 2019.

  7. J.G. Mathieson, M.A. Somerville, A. Deev, and S. Jahanshahi, Iron Ore 34, 581 (2015).

    Article  Google Scholar 

  8. K. Isnugroho, D.C. Birawidha, and Y. Hendronursito, in Conference on Fundamental & Applied Science for Advanced Technology (2016).

  9. R. Lovel, K. Vining, and M. Dell’Amico, Miner. Process. Extr. Metall. 116, 85 (2007).

    Article  Google Scholar 

  10. X. Fan, Z. Ji, M. Gan, X. Chen, and T. Jiang, Fuel Process. Technol. 150, 1 (2016).

    Article  Google Scholar 

  11. C. Luan, C. You, and D. Zhang, Energy 69, 562 (2014).

    Article  Google Scholar 

  12. H. Meyers and R.F. Jennings, SEAISI Q. 38 (1979).

  13. J. Ren, F. Li, Q. Li, and Z. Qiu, in Proceedings of the 9th Asia-Pacific International Symposium on Combustion and Energy Utilization (2007).

  14. A. Babich, D. Senk, and M. Fernandez, ISIJ Int. 50, 81 (2010).

    Article  Google Scholar 

  15. M. Gan, X. Fan, X. Chen, Z. Ji, Y. Wang, Z. Yu, and T. Jiang, ISIJ Int. 52, 1574 (2012).

    Article  Google Scholar 

  16. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, and Y.S. Ok, Chemosphere 99, 19 (2014).

    Article  Google Scholar 

  17. M. Li, Y. Tang, N. Ren, Z. Zhang, and Y. Cao, J. Clean. Prod. 172, 3342 (2018).

    Article  Google Scholar 

  18. D. Woolf, J.E. Amonette, F.A. Street-Perrott, J. Lehmann, and S. Joseph, Nat. Commun. 1, 1 (2010).

    Article  Google Scholar 

  19. H. Konishi, K. Ichikawa, and T. Usui, ISIJ Int. 50, 386 (2010).

    Article  Google Scholar 

  20. A.V. Bridgwater, Int. J. Glob. Energy Issues 27, 160 (2007).

    Article  Google Scholar 

  21. W. Yan, T.C. Acharjee, C.J. Coronella, and V.R. Vasquez, Environ. Prog. Sustain. 28, 435 (2009).

    Article  Google Scholar 

  22. M.J. Antal and M. Gronli, Ind. Eng. Chem. Res. 42, 1619 (2003).

    Article  Google Scholar 

  23. http://www.pyne.co.uk/?_id = 76. Accessed 6 Mar 2019.

  24. W.J. Desisto, I.N. Hill, S.H. Beis, S. Mukkamala, J. Joseph, C. Baker, T.-H. Ong, E.A. Stemmler, M.C. Wheeler, B.G. Frederick, and A.V. Heiningen, Energy Fuels 24, 2642 (2010).

    Article  Google Scholar 

  25. A. Repo, M. Tuomi, and J. Liski, GCB Bioenergy 3, 107 (2011).

    Article  Google Scholar 

  26. E.J. Luoga, E.T.F. Witkowski, and K. Balkwill, Ecol. Econ. 35, 243 (2000).

    Article  Google Scholar 

  27. J.A. Libra, K.S. Ro, C. Kammann, A. Funke, N.D. Berge, Y. Neubauer, M.M. Titirici, C. Fuhner, O. Bens, J. Kern, and K.H. Emmerich, Biofuels 2, 71 (2011).

    Article  Google Scholar 

  28. H. Tsukashi, Bull. Chem. Soc. Jpn. 39, 460 (1966).

    Article  Google Scholar 

  29. T.R. Brown, M.M. Wright, and R.C. Brown, Biofuels Bioprod. Biorefin. 5, 54 (2011).

    Article  Google Scholar 

  30. S. Meyer, B. Glaser, and P. Quicker, Environ. Sci. Technol. 45, 9473 (2011).

    Article  Google Scholar 

  31. H. Kamyab, S. Chelliapan, R. Shahbazian-Yassar, M.F.M. Din, T. Khademi, A. Kumar, and S. Rezania, JOM 69, 1361 (2017).

    Article  Google Scholar 

  32. B.D. Flores, I.V. Flores, A. Guerrero, D.R. Orellana, J.G. Pohlmann, M.A. Diez, A.G. Borrego, E. Osório, and A.C.F. Vilela, Fuel Process. Technol. 155, 97 (2017).

    Article  Google Scholar 

  33. M.A. Díez, R. Alvarez, and C. Barriocanal, Int. J. Coal Geol. 50, 389 (2002).

    Article  Google Scholar 

  34. E. Mousa, C. Wang, J. Riesbeck, and M. Larsson, Renew. Sustain. Energy Rev. 65, 1247 (2016).

    Article  Google Scholar 

  35. J.A. Macphee, J.F. Gransden, L. Giroux, and J.T. Price, Fuel Process. Technol. 90, 16 (2009).

    Article  Google Scholar 

  36. K.W. Ng, L. Giroux, T. MacPhee, and T. Todoschuk, in AISTech 2012: Proceedings of the Iron & Steel Technology Conference (2012).

  37. T. Kawaguchi and M. Hara, ISIJ Int. 53, 1599 (2013).

    Article  Google Scholar 

  38. X. Xing, H. Rogers, G. Zhang, K. Hockings, P. Zulli, A. Deev, J. Mathieson, and O. Ostrovski, Fuel Process. Technol. 157, 42 (2017).

    Article  Google Scholar 

  39. H. Suopajärvi, E. Dahl, A. Kemppainen, S. Gornostayev, A. Koskela, and T. Fabritius, Energies 10, 1850 (2017).

    Article  Google Scholar 

  40. K. Li, J. Zhang, M. Barati, R. Khanna, Z. Liu, J. Zhong, X. Ning, S. Ren, T. Yang, and V. Sahajwalla, Fuel 145, 202 (2015).

    Article  Google Scholar 

  41. K.W. Ng, J.A. MacPhee, L. Giroux, and T. Todoschuk, Fuel Process. Technol. 92, 801 (2011).

    Article  Google Scholar 

  42. M.A. Diez and A.G. Borrego, Fuel 113, 59 (2013).

    Article  Google Scholar 

  43. M.A. Diez, R. Alvarez, and M. Fernandez, Fuel 96, 306 (2012).

    Article  Google Scholar 

  44. A. Guerrero, M.A. Diez, and A.G. Borrego, Int. J. Coal Geol. 147–148, 105 (2015).

    Article  Google Scholar 

  45. M. Zandi, M. Martinez-Pacheco, and T.A.T. Fray, Miner. Eng. 23, 1139 (2010).

    Article  Google Scholar 

  46. R.P. Bahgat, U.S. Chattoraj, and S.K. Sil, ISIJ Int. 46, 1728 (2006).

    Article  Google Scholar 

  47. H. Kokubu, T. Kodama, H. Itaya, and Y. Oguchi, ISIJ Int. 26, 182 (1986).

    Article  Google Scholar 

  48. K. Higuchi and R. Heerema, Miner. Eng. 16, 463 (2003).

    Article  Google Scholar 

  49. L. Xiong, Z. Peng, F. Gu, L. Ye, L. Wang, M. Rao, Y. Zhang, G. Li, and T. Jiang, Powder Technol. 340, 131 (2018).

    Article  Google Scholar 

  50. X. Fan, J. Meng, X. Chen, J. Zhuang, Y. Li, and L. Yuan, J. Cent. South Univ. 39, 1125 (2008).

    Google Scholar 

  51. G.C. Abreu, J.A.D. Carvalho, B.E.C.D. Silva, and R.H. Pedrini, J. Clean. Prod. 101, 387 (2015).

    Article  Google Scholar 

  52. X. Fan, Z. Ji, M. Gan, X. Chen, L. Yin, and T. Jiang, ISIJ Int. 55, 521 (2015).

    Article  Google Scholar 

  53. L. Lu, M. Adam, M. Kilburn, S. Hapugoda, M. Somerville, S. Jahanshahi, and J.G. Mathieson, ISIJ Int. 53, 1607 (2013).

    Article  Google Scholar 

  54. X. Chen, Y. Huang, M. Gan, X. Fan, Z. Yu, and L. Yuan, J. Iron Steel Res. Int. 22, 1107 (2015).

    Article  Google Scholar 

  55. Z. Cheng, Y. Jian, Z. Lang, Y. Liu, Z. Guo, and Q. Wang, Energy Convers. Manag. 125, 254 (2016).

    Article  Google Scholar 

  56. T. Ariyama, R. Murai, and M. Sato, ISIJ Int. 10, 1371 (2005).

    Article  Google Scholar 

  57. S. Ueda, K. Watanabe, K. Yanagiya, T. Murakami, R. Inoue, and T. Ariyama, ISIJ Int. 10, 1505 (2009).

    Article  Google Scholar 

  58. H. Mizoguchi, H. Suzuki, and S. Hayashi, ISIJ Int. 8, 1247 (2011).

    Article  Google Scholar 

  59. Y. Zhang, D. Duan, Z. You, G. Li, X. Fan, and T. Jiang, in 4th International Symposium on High-Temperature Metallurgical Processing (2013).

  60. L. Ye, Z. Peng, L. Wang, A. Anzulevich, I. Bychkov, H. Tang, M. Rao, Y. Zhang, G. Li, and T. Jiang, Powder Technol. 338, 365 (2018).

    Article  Google Scholar 

  61. J.G. Mathieson, H. Rogers, M.A. Somerville, and S. Jahanshahi, ISIJ Int. 52, 1489 (2012).

    Article  Google Scholar 

  62. P.L. Hooey, A. Bodén, C. Wang, C.E. Grip, and B. Jansson, ISIJ Int. 50, 924 (2010).

    Article  Google Scholar 

  63. J.H. Noldin, in Proceeding of 6th European Coke and Ironmaking Congress (2011).

  64. H. Suopajärvi, K. Umeki, E. Mousa, A. Hedayati, H. Romar, A. Kemppainen, C. Wang, A. Phounglamcheik, S. Tuomikoski, N. Norberg, A. Andefors, M. Öhman, U. Lassi, and T. Fabritius, Appl. Energy 213, 384 (2018).

    Article  Google Scholar 

  65. C. Wang, P. Mellin, J. Lövgren, L. Nilsson, W. Yang, H. Salman, A. Hultgren, and M. Larsson, Energy Convers. Manag. 102, 217 (2015).

    Article  Google Scholar 

  66. C. Feliciano-Bruzual and J.A. Mathews, Rev. Metal. Madrid. 49, 458 (2013).

    Article  Google Scholar 

  67. G. Fick, O. Mirgaux, P. Neau, and F. Patisson, Waste Biomass Valoriz. 5, 43 (2014).

    Article  Google Scholar 

  68. T. Norgate and D. Langberg, ISIJ Int. 49, 587 (2009).

    Article  Google Scholar 

  69. A. Cores, A. Babich, M. Muniz, A. Isidro, S. Ferreira, and R. Martin, Ironmak. Steelmak. 34, 231 (2007).

    Article  Google Scholar 

  70. J.G.M.S. Machado, E. Osório, and C.F. Vilela, Mater. Res. 13, 287 (2010).

    Article  Google Scholar 

  71. http://www.ieabcc.nl/publications/IEA_Bioenergy_T32_Torrefaction_review.pdf. Assessed 20 Mar 2019.

  72. F. Hanrot, D. Sert, J. Delinchant, R. Pietruck, T. Bürgler, A. Babich, M. Fernández, R. Alvarez, and M.A. Diez, in Proceeding of 1st Spanish National Conference on Advances in Materials Recycling and Eco-Energy (2009).

  73. A. Kasai and Y. Matsui, ISIJ Int. 44, 2073 (2004).

    Article  Google Scholar 

  74. Y. Ujisawa, K. Nakano, Y. Matsukura, K. Sunahara, S. Komatsu, and T. Yamamoto, ISIJ Int. 45, 1379 (2005).

    Article  Google Scholar 

  75. V. Zaharia and R. Sahajwalla, ISIJ Int. 49, 1513 (2009).

    Article  Google Scholar 

  76. https://www.iea-coal.org/co2-abatement-in-the-iron-and-steel-industry-ccc-193/ Assessed 20 May 2019.

  77. B. Fidalgo, C. Berrueco, and M. Millan, J. Anal. Appl. Pyrol. 113, 274 (2015).

    Article  Google Scholar 

  78. J. Mathieson, H. Rogers, M. Somerville, P. Ridgeway, and S. Jahanshahi, in Proceedings of 1st International Conference on Energy Efficiency and CO 2 Reduction in the Steel Industry (2011).

  79. N.F.M. Yunos, M. Zaharia, M.A. Idris, D. Nath, R. Khanna, and V. Sahajwalla, Energy Fuels 26, 278 (2012).

    Article  Google Scholar 

  80. D. Thorsten, R. Tim, S. Marc, E. Thomas, and P. Herbert, Ironmak. Steelmak. 43, 564 (2016).

    Article  Google Scholar 

  81. H. Suopajärvi, E. Pongrácz, and T. Fabritius, Renew. Sustain. Energy Rev. 25, 511 (2013).

    Article  Google Scholar 

  82. H. Suopajärvi, A. Kemppainen, J. Haapakangas, and T. Fabritius, J. Clean. Prod. 148, 709 (2017).

    Article  Google Scholar 

  83. C. Feliciano-Bruzual, J. Mater. Res. Technol. 3, 233 (2014).

    Article  Google Scholar 

  84. M.J. Antal, K. Mochidzuki, and L.S. Paredes, Ind. Eng. Chem. Res. 42, 3690 (2003).

    Article  Google Scholar 

  85. M.J. Gronnow, V.L. Budarin, O. Mašek, K.N. Crombie, P.A. Brownsort, P.S. Shuttleworth, P.R. Hurst, and J.H. Clark, GCB Bioenergy 5, 144 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grants 51811530108, 51504297, 51881340420, and 51774337, the Natural Science Foundation of Hunan Province, China under Grant 2017JJ3383, the Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources under Grant 2014-405, the Guangdong Guangqing Metal Technology Co. Ltd. under Grant 738010210, the Innovation-Driven Program of Central South University under Grant 2016CXS021, the Shenghua Lieying Program of Central South University under Grant 502035001, the Fundamental Research Funds for the Central Universities of Central South University under Grants 2018zzts798, 2018zzts779, 2018zzts220, 2018zzts222, 2019zzts174, and 2019zzts706, the Russian Foundation for Basic Research under Grants 18-58-53055 GFENa and 16-29-14045 ofim, and Act 211 of the Government of the Russian Federation (contract no. 02.A03.21.0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Peng, Z., Wang, L. et al. Use of Biochar for Sustainable Ferrous Metallurgy. JOM 71, 3931–3940 (2019). https://doi.org/10.1007/s11837-019-03766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03766-4

Navigation