Skip to main content
Log in

Computational Modeling of the Mechanical Behavior of 3D Hybrid Organic–Inorganic Nanocomposites

  • Modeling and Simulation of Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, a computational model of a three-dimensional (3D) hybrid nanocomposite was analyzed using the cohesive finite element method. This model contains hard mineral nanograins bonded by a relatively soft and thin organic adhesive layer to mimic the ultrastructure of biological ceramics such as bone and nacre. The simulation results showed that the adhesive phase, which comprises only a few percent of the nanocomposite volume, significantly enhanced the toughness through widespread cohesive damage, diffuse nanocrack formation, and complex trajectories of crack growth. In addition, the 3D model revealed the strain-hardening/-softening behavior of the nanocomposite, which was not captured by two-dimensional models, highlighting the importance of 3D architecture in the mechanical behavior of the natural materials. The mechanical properties of the nanocomposite were comparable to those of bone and nacre, indicating that a damage-tolerant behavior of the natural materials can be attained by using only small amount of a tough adhesive within the 3D microstructure of brittle minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Nat. Mater. 14, nmat4089 (2014).

    Google Scholar 

  2. P. Fratzl and R. Weinkamer, Prog. Mater Sci. 52, 1263–1334 (2007).

    Article  Google Scholar 

  3. M.A. Meyers, J. McKittrick, and P.-Y. Chen, Science 339, 773–779 (2013).

    Article  Google Scholar 

  4. F. Barthelat and R. Rabiei, J. Mech. Phys. Solids 59, 829–840 (2011).

    Article  MathSciNet  Google Scholar 

  5. A.K. Nair, A. Gautieri, S.-W. Chang, and M.J. Buehler, Nat. Commun. 4, 1724 (2013).

    Article  Google Scholar 

  6. G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A.G. Cidade, G.D. Stucky, D.E. Morse, and P.K. Hansma, Nat. Mater. 4, 612–616 (2005).

    Article  Google Scholar 

  7. D. Vashishth, J.C. Behiri, and W. Bonfield, J. Biomech. 30, 763–769 (1997).

    Article  Google Scholar 

  8. M.E. Launey, M.J. Buehler, and R.O. Ritchie, Annu. Rev. Mater. Res. 40, 25–53 (2010).

    Article  Google Scholar 

  9. R.O. Ritchie, M.J. Buehler, and P. Hansma, Phys. Today 62, 41–47 (2009).

    Article  Google Scholar 

  10. F. Barthelat, C.-M. Li, C. Comi, and H.D. Espinosa, J. Mater. Res. 21, 1977–1986 (2006).

    Article  Google Scholar 

  11. P. Zhang, M.A. Heyne, and A.C. To, J. Mech. Phys. Solids 83, 285–300 (2015).

    Article  MathSciNet  Google Scholar 

  12. M. Maghsoudi-Ganjeh, L. Lin, X. Wang, and X. Zeng, Int. J. Smart Nano Mater. 10, 90–105 (2019).

    Article  Google Scholar 

  13. S. Askarinejad and N.J.R. Rahbar, Soc. Interface 12, 20140855 (2015).

    Article  Google Scholar 

  14. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Science 322, 1516–1520 (2008).

    Article  Google Scholar 

  15. N. Reznikov, R. Shahar, and S. Weiner, Acta Biomater. 10, 3815–3826 (2014).

    Article  Google Scholar 

  16. L. Lin, J. Samuel, X. Zeng, and X. Wang, J. Mech. Behav. Biomed. Mater. 65, 224–235 (2017).

    Article  Google Scholar 

  17. M. Maghsoudi-Ganjeh, L. Lin, X. Wang, and X. Zeng, Biomech. Model. Mechanobiol. 18, 463–478 (2019).

    Article  Google Scholar 

  18. X. Li, W.-C. Chang, Y.J. Chao, R. Wang, and M. Chang, Nano Lett. 4, 613–617 (2004).

    Article  Google Scholar 

  19. M. Rousseau, E. Lopez, P. Stempflé, M. Brendlé, L. Franke, A. Guette, R. Naslain, and X. Bourrat, Biomaterials 26, 6254–6262 (2005).

    Article  Google Scholar 

  20. B.L. Smith, T.E. Schäffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, and P.K. Hansma, Nature 399, 21607 (1999).

    Article  Google Scholar 

  21. J.J. Gray, Curr. Opin. Struct. Biol. 14, 110–115 (2004).

    Article  Google Scholar 

  22. Z.B. Lai, M. Wang, C. Yan, and A. Oloyede, J. Mech. Behav. Biomed. Mater. 36, 12–20 (2014).

    Article  Google Scholar 

  23. R. Wang and H.S. Gupta, Annu. Rev. Mater. Res. 41, 41–73 (2011).

    Article  Google Scholar 

  24. J.W.C. Dunlop, R. Weinkamer, and P. Fratzl, Mater. Today 14, 70–78 (2011).

    Article  Google Scholar 

  25. K. Tai, F.-J. Ulm, and C. Ortiz, Nano Lett. 6, 2520–2525 (2006).

    Article  Google Scholar 

  26. A.A. Poundarik, T. Diab, G.E. Sroga, A. Ural, A.L. Boskey, C.M. Gundberg, and D. Vashishth, Proc. Natl. Acad. Sci. 109, 19178–19183 (2012).

    Article  Google Scholar 

  27. F. Hang, H.S. Gupta, and A.H. Barber, J. R. Soc. Interface 11, 20130993 (2014).

    Article  Google Scholar 

  28. X. Li, Z.-H. Xu, and R. Wang, Nano Lett. 6, 2301–2304 (2006).

    Article  Google Scholar 

  29. F. Barthelat and H.D. Espinosa, Exp. Mech. 47, 311–324 (2007).

    Article  Google Scholar 

  30. S. Askarinejad and N. Rahbar, Int. J. Plast 107, 122–149 (2018).

    Article  Google Scholar 

  31. M.S. Hosseini, F.A. Cordisco, and P.D. Zavattieri, J. Mech. Behav. Biomed. Mater. (2019). https://doi.org/10.1016/j.jmbbm.2019.04.047.

    Article  Google Scholar 

  32. G. Hantal, L. Brochard, R.J.-M. Pellenq, F.-J. Ulm, and B. Coasne, Langmuir 33, 11457–11466 (2017).

    Article  Google Scholar 

  33. K. Okumura and P.-G. de Gennes, Eur. Phys. J. E 4, 121–127 (2001).

    Article  Google Scholar 

  34. A.P. Jackson, J.F.V. Vincent, and R.M. Turner, Alexander RM Proc. R. Soc. Lond. B Biol. Sci. 234, 415 (1988).

    Article  Google Scholar 

  35. S.P. Kotha, Y. Li, and N. Guzelsu, J. Mater. Sci. 36, 2001–2007 (2001).

    Article  Google Scholar 

  36. B. Ji and H. Gao, Mater. Sci. Eng. A 366, 96–103 (2004).

    Article  Google Scholar 

  37. H. Gao, B. Ji, I.L. Jäger, E. Arzt, and P. Fratzl, Proc. Natl. Acad. Sci. 100, 5597–5600 (2003).

    Article  Google Scholar 

  38. Z.B. Lai and C. Yan, J. Mech. Behav. Biomed. Mater. 65, 236–247 (2017).

    Article  Google Scholar 

  39. H.S. Gupta, S. Krauss, M. Kerschnitzki, A. Karunaratne, J.W.C. Dunlop, A.H. Barber, P. Boesecke, S.S. Funari, and P. Fratzl, J. Mech. Behav. Biomed. Mater. 28, 366–382 (2013).

    Article  Google Scholar 

  40. Z. Wang, D. Vashishth, and R.C. Picu, Biomech. Model. Mechanobiol. 17, 1093–1106 (2018).

    Article  Google Scholar 

  41. L. Lin, X. Wang, and X. Zeng, Int. J. Solids Struct. 115–116, 43–52 (2017).

    Article  Google Scholar 

  42. R. Quey, P.R. Dawson, and F. Barbe, Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011).

    Article  Google Scholar 

  43. M.J. van den Bosch, P.J.G. Schreurs, and M.G.D. Geers, Eng. Fract. Mech. 73, 1220–1234 (2006).

    Article  Google Scholar 

  44. K. Park and G.H. Paulino, Eng. Fract. Mech. 93, 239–262 (2012).

    Article  Google Scholar 

  45. L. Lin and X. Zeng, Eng. Fract. Mech. 142, 50–63 (2015).

    Article  Google Scholar 

  46. L. Lin, X. Wang, and X. Zeng, Eng. Fract. Mech. 169, 276–291 (2017).

    Article  Google Scholar 

  47. M. Safaei, A. Sheidaei, M. Baniassadi, S. Ahzi, M. Mosavi Mashhadi, and F. Pourboghrat, Comput. Mater. Sci. 96, 191–199 (2015).

    Article  Google Scholar 

  48. I. Lynch and K.A. Dawson, Nano Today 3, 40–47 (2008).

    Article  Google Scholar 

  49. J. Samuel, D. Sinha, J.C.-G. Zhao, and X. Wang, Bone 59, 199–206 (2014).

    Article  Google Scholar 

  50. G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A.G. Cidade, G.D. Stucky, D.E. Morse, and P.K. Hansma, Nat. Mater. 4, 612–616 (2005).

    Article  Google Scholar 

  51. Q. Luo, R. Nakade, X. Dong, Q. Rong, and X. Wang, J. Mech. Behav. Biomed. Mater. 4, 943–952 (2011).

    Article  Google Scholar 

  52. A.Y.-M. Lin and M.A. Meyers, J. Mech. Behav. Biomed. Mater. 2, 607–612 (2009).

    Article  Google Scholar 

  53. T. Siegmund, M.R. Allen, and D.B. Burr, J. Biomech. 41, 1427–1435 (2008).

    Article  Google Scholar 

  54. I.M. Gitman, H. Askes, and L.J. Sluys, Eng. Fract. Mech. 74, 2518–2534 (2007).

    Article  Google Scholar 

  55. M.J. Mirzaali, J.J. Schwiedrzik, S. Thaiwichai, J.P. Best, J. Michler, P.K. Zysset, and U. Wolfram, Bone 93, 196–211 (2016).

    Article  Google Scholar 

  56. F. Barthelat, H. Tang, P.D. Zavattieri, C.-M. Li, and H.D. Espinosa, J. Mech. Phys. Solids 55, 306–337 (2007).

    Article  Google Scholar 

  57. K. Tai, M. Dao, S. Suresh, A. Palazoglu, and C. Ortiz, Nat. Mater. 6, 454 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by a grant from the National Science Foundation (CMMI-1538448) and a grant from the University of Texas at San Antonio, Office of the Vice President for Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 35678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghsoudi-Ganjeh, M., Lin, L., Wang, X. et al. Computational Modeling of the Mechanical Behavior of 3D Hybrid Organic–Inorganic Nanocomposites. JOM 71, 3951–3961 (2019). https://doi.org/10.1007/s11837-019-03737-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03737-9

Navigation