Skip to main content
Log in

Computational modeling and simulation of bioinspired nacre-like composites

  • Article
  • Focus Issue: Multiscale Materials Modeling of Interface-mediated Thermomechanical Behavior
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Inspired by design motifs driving the balanced combination of rigidity, strength, and toughness in biological materials, this paper presents 3D computational modeling and simulation of an interface-enriched hybrid nanocomposite mimicking nacre’s ultrastructure. In this architectured material model, stiff mineral tablets are bonded by relatively soft and ductile organic matrices placed in the junction and interlayer space of the microstructure. Finite element analysis of this staggered multilayered model material is conducted using an in-house developed software package in which thin organic interfaces are represented by a generalized cohesive interface zone model. The computational model is validated against experimental measurements of stress–strain curves of nacre in tension. Subsequently, the deformation/toughening mechanisms and failure modes are discussed in tension and compression loading conditions. As an important microstructural feature, the effect of tablet aspect ratio on the elastic modulus of the composite is discussed. The role of the interlayer organic matrix on damage-induced tensile instability and compressive buckling in slender composite models is elucidated.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. L.S. Dimas, G.H. Bratzel, I. Eylon, M.J. Buehler, Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing. Adv. Funct. Mater. 23, 4629–4638 (2013)

    Article  CAS  Google Scholar 

  2. M. Maghsoudi-Ganjeh, L. Lin, X. Wang, X. Wang, X. Zeng, Computational Modeling of the Mechanical Behavior of 3D Hybrid Organic-Inorganic Nanocomposites. JOM. 71, 3951–3961 (2019)

    Article  Google Scholar 

  3. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Tough, Bio-Inspired Hybrid Materials. Science 322, 1516–1520 (2008)

    Article  CAS  Google Scholar 

  4. F. Barthelat, Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size. J. Mech. Phys. Solids. 73, 22–37 (2014)

    Article  Google Scholar 

  5. M. Maghsoudi Ganjeh, X. Zeng, X. Wang, Nanomechanics and Ultrastructure of Bone: A Review. Comput. Model. Eng. Sci. 125, 1–32 (2020)

    Google Scholar 

  6. M.A. Meyers, J. McKittrick, P.-Y. Chen, Structural Biological Materials: Critical Mechanics-Materials Connections. Science 339, 773–779 (2013)

    Article  CAS  Google Scholar 

  7. J.W.C. Dunlop, R. Weinkamer, P. Fratzl, Artful interfaces within biological materials. Mater. Today. 14, 70–78 (2011)

    Article  Google Scholar 

  8. F. Song, X.H. Zhang, Y.L. Bai, Microstructure and Characteristics in the Organic Matrix Layers of Nacre. J. Mater. Res. 17, 1567–1570 (2002)

    Article  CAS  Google Scholar 

  9. K.S. Katti, B. Mohanty, D.R. Katti, Nanomechanical properties of nacre. J. Mater. Res. 21, 1237–1242 (2006)

    Article  CAS  Google Scholar 

  10. S. Askarinejad, N. Rahbar, Toughening mechanisms in bioinspired multilayered materials. J. R. Soc. Interface. 12, 20140855 (2015)

    Article  Google Scholar 

  11. F. Barthelat, H. Tang, P.D. Zavattieri, C.-M. Li, H.D. Espinosa, On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids. 55, 306–337 (2007)

    Article  CAS  Google Scholar 

  12. K.S. Katti, D.R. Katti, Why is nacre so tough and strong? Mater. Sci. Eng. C. 26, 1317–1324 (2006)

    Article  CAS  Google Scholar 

  13. A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, U. Steiner, Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 3, 966 (2012)

    Article  CAS  Google Scholar 

  14. I. Corni, T.J. Harvey, J.A. Wharton, K.R. Stokes, F.C. Walsh, R.J.K. Wood, A review of experimental techniques to produce a nacre-like structure. Bioinspir. Biomim. 7, 031001 (2012)

    Article  CAS  Google Scholar 

  15. H. Kakisawa, T. Sumitomo, The toughening mechanism of nacre and structural materials inspired by nacre. Sci. Technol. Adv. Mater. 12, 064710 (2011)

    Article  CAS  Google Scholar 

  16. R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, I.A. Aksay, Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001)

    Article  CAS  Google Scholar 

  17. S. Askarinejad, H.A. Choshali, C. Flavin, N. Rahbar, Effects of tablet waviness on the mechanical response of architected multilayered materials: Modeling and experiment. Compos. Struct. 195, 118–125 (2018)

    Article  Google Scholar 

  18. A.G. Checa, J.H.E. Cartwright, M.-G. Willinger, Mineral bridges in nacre. J. Struct. Biol. 176, 330–339 (2011)

    Article  CAS  Google Scholar 

  19. M.I. Lopez, P.E. Meza Martinez, M.A. Meyers, Organic interlamellar layers, mesolayers and mineral nanobridges: Contribution to strength in abalone (Haliotis rufescence) nacre, Acta Biomater. 10, 2056–2064 (2014) .

  20. M.A. Meyers, A.Y.-M. Lin, P.-Y. Chen, J. Muyco, Mechanical strength of abalone nacre: role of the soft organic layer. J. Mech. Behav. Biomed. Mater. 1, 76–85 (2008)

    Article  Google Scholar 

  21. B.L. Smith, T.E. Schäffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, P.K. Hansma, Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999)

    Article  CAS  Google Scholar 

  22. X. Li, W.-C. Chang, Y.J. Chao, R. Wang, M. Chang, Nanoscale structural and mechanical characterization of a natural nanocomposite material: the shell of red abalone. Nano Lett. 4, 613–617 (2004)

    Article  CAS  Google Scholar 

  23. M. Rousseau, E. Lopez, P. Stempflé, M. Brendlé, L. Franke, A. Guette, R. Naslain, X. Bourrat, Multiscale structure of sheet nacre. Biomaterials 26, 6254–6262 (2005)

    Article  CAS  Google Scholar 

  24. S. Frølich, J.C. Weaver, M.N. Dean, H. Birkedal, Uncovering Nature’s Design Strategies through Parametric Modeling, Multi-Material 3D Printing, and Mechanical Testing. Adv. Eng. Mater. 19, e201600848 (2017)

    Article  CAS  Google Scholar 

  25. K. Ko, S. Jin, S.E. Lee, J.-W. Hong, Impact resistance of nacre-like composites diversely patterned by 3D printing. Compos. Struct. 238, 111951 (2020)

    Article  Google Scholar 

  26. F. Liu, T. Li, Z. Jia, L. Wang, Combination of stiffness, strength, and toughness in 3D printed interlocking nacre-like composites. Extreme Mech. Lett. 35, 100621 (2020)

    Article  Google Scholar 

  27. S. Tawfick, N. Nayakanti, C. Prohoda, A.J. Hart, Geometric tailoring of strength and toughness in self-locking interleaved laminates. Extreme Mech. Lett. 27, 94–101 (2019)

    Article  Google Scholar 

  28. P. Tran, T.D. Ngo, A. Ghazlan, D. Hui, Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings. Compos. Part B Eng. 108, 210–223 (2017)

    Article  CAS  Google Scholar 

  29. B. Ji, H. Gao, A study of fracture mechanisms in biological nano-composites via the virtual internal bond model. Mater. Sci. Eng. A. 366, 96–103 (2004)

    Article  CAS  Google Scholar 

  30. K. Okumura, P.-G. de Gennes, Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures. Eur. Phys. J. E. 4, 121–127 (2001)

    Article  CAS  Google Scholar 

  31. A.P. Jackson, J.F.V. Vincent, R.M. Turner, R.M. Alexander, The mechanical design of nacre. Proc. R. Soc. Lond. B Biol. Sci. 234, 415–440 (1988)

    Article  Google Scholar 

  32. S.P. Kotha, Y. Li, N. Guzelsu, Micromechanical model of nacre tested in tension. J. Mater. Sci. 36, 2001–2007 (2001)

    Article  CAS  Google Scholar 

  33. D.R. Katti, K. Katti, J.M. Sopp, M. Sarikaya, 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites, (2001) .

  34. L. Lin, X. Wang, X. Zeng, Computational modeling of interfacial behaviors in nanocomposite materials. Int. J. Solids Struct. 115–116, 43–52 (2017)

    Article  CAS  Google Scholar 

  35. S. Mathiazhagan, S. Anup, Influence of platelet aspect ratio on the mechanical behaviour of bio-inspired nanocomposites using molecular dynamics. J. Mech. Behav. Biomed. Mater. 59, 21–40 (2016)

    Article  CAS  Google Scholar 

  36. A.J. Abhirami, S. Anup, Elastic Properties of Non-self-Similar Two Hierarchical Bio-inspired Unidirectional Composites, in: R.V. Prakash, R. Suresh Kumar, A. Nagesha, G. Sasikala, A.K. Bhaduri (Eds.), Struct. Integr. Assess., Springer, Singapore, 2020: pp. 241–249.

  37. T. Kremer, H. Schürmann, Buckling of tension-loaded thin-walled composite plates with cut-outs. Compos. Sci. Technol. 68, 90–97 (2008)

    Article  Google Scholar 

  38. Y. Su, B. Ji, K.-C. Hwang, Y. Huang, Micro-buckling in the nanocomposite structure of biological materials. J. Mech. Phys. Solids. 60, 1771–1790 (2012)

    Article  CAS  Google Scholar 

  39. L. Lin, X. Wang, X. Zeng, Geometrical modeling of cell division and cell remodeling based on Voronoi tessellation method. CMES Comput. Model. Eng. Sci. 98, 203–220 (2014)

    Google Scholar 

  40. F. Barthelat, H.D. Espinosa, An Experimental Investigation of Deformation and Fracture of Nacre-Mother of Pearl. Exp. Mech. 47, 311–324 (2007)

    Article  Google Scholar 

  41. F. Song, A.K. Soh, Y.L. Bai, Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623–3631 (2003)

    Article  CAS  Google Scholar 

  42. M. Maghsoudi-Ganjeh, X. Wang, X. Zeng, Computational investigation of the effect of water on the nanomechanical behavior of bone. J. Mech. Behav. Biomed. Mater. 101, 103454 (2020)

    Article  CAS  Google Scholar 

  43. M. Maghsoudi-Ganjeh, L. Lin, X. Wang, X. Zeng, Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach. Biomech. Model. Mechanobiol. 18, 463–478 (2019)

    Article  Google Scholar 

  44. M. Maghsoudi-Ganjeh, L. Lin, X. Wang, X. Zeng, Bioinspired design of hybrid composite materials. Int. J. Smart Nano Mater. 10, 90–105 (2019)

    Article  Google Scholar 

  45. L. Lin, J. Samuel, X. Zeng, X. Wang, Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model. J. Mech. Behav. Biomed. Mater. 65, 224–235 (2017)

    Article  CAS  Google Scholar 

  46. L. Lin, X. Wang, X. Zeng, An improved interfacial bonding model for material interface modeling. Eng. Fract. Mech. 169, 276–291 (2017)

    Article  Google Scholar 

  47. L. Lin, X. Wang, X. Zeng, The role of cohesive zone properties on intergranular to transgranular fracture transition in polycrystalline solids. Int. J. Damage Mech. 26, 379–394 (2015)

    Article  Google Scholar 

  48. A.G. Evans, Z. Suo, R.Z. Wang, I.A. Aksay, M.Y. He, J.W. Hutchinson, Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475–2484 (2001)

    Article  CAS  Google Scholar 

  49. A.Y.-M. Lin, M.A. Meyers, Interfacial shear strength in abalone nacre. J. Mech. Behav. Biomed. Mater. 2, 607–612 (2009)

    Article  Google Scholar 

  50. F. Barthelat, C.-M. Li, C. Comi, H.D. Espinosa, Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21, 1977–1986 (2006)

    Article  CAS  Google Scholar 

  51. I. Hrabánková, J. Frýda, J. Šepitka, T. Sasaki, B. Frýdová, J. Lukeš, Mechanical properties of deep-sea molluscan shell. Comput. Methods Biomech. Biomed. Engin. 16, 287–289 (2013)

    Article  Google Scholar 

  52. N. Zhang, Y. Chen, Nanoscale plastic deformation mechanism in single crystal aragonite. J. Mater. Sci. 48, 785–796 (2013)

    Article  CAS  Google Scholar 

  53. T.J. Hughes, K.S. Pister, R.L. Taylor, Implicit-explicit finite elements in nonlinear transient analysis. Comput. Methods Appl. Mech. Eng. 17, 159–182 (1979)

    Article  Google Scholar 

  54. K. Wu, Z. Zheng, S. Zhang, L. He, H. Yao, X. Gong, Y. Ni, Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure. Mater. Des. 163, 107532 (2019)

    Article  Google Scholar 

  55. H.-L. Gao, S.-M. Chen, L.-B. Mao, Z.-Q. Song, H.-B. Yao, H. Cölfen, X.-S. Luo, F. Zhang, Z. Pan, Y.-F. Meng, Y. Ni, S.-H. Yu, Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 8, 287 (2017)

    Article  CAS  Google Scholar 

  56. Y. Ni, Z. Song, H. Jiang, S.-H. Yu, L. He, Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths. J. Mech. Phys. Solids. 81, 41–57 (2015)

    Article  Google Scholar 

  57. R. Moheimani, R. Sarayloo, H. Dalir, Failure study of fiber/epoxy composite laminate interface using cohesive multiscale model. Adv. Compos. Lett. 29, 2633366X20910157 (2020) .

  58. S.R. Keshavanarayana, H. Shahverdi, A. Kothare, C. Yang, J. Bingenheimer, The effect of node bond adhesive fillet on uniaxial in-plane responses of hexagonal honeycomb core. Compos. Struct. 175, 111–122 (2017)

    Article  Google Scholar 

  59. A. Ehsani, J. Rezaeepazhand, Stacking sequence optimization of laminated composite grid plates for maximum buckling load using genetic algorithm. Int. J. Mech. Sci. 119, 97–106 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from the National Science Foundation (Grant No. CMMI-1538448) , and a grant from the University of Texas at San Antonio, Office of the Vice President for Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Zeng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghsoudi-Ganjeh, M., Lin, L., Yang, X. et al. Computational modeling and simulation of bioinspired nacre-like composites. Journal of Materials Research 36, 2651–2661 (2021). https://doi.org/10.1557/s43578-021-00124-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00124-6

Keywords

Navigation