Skip to main content
Log in

In-Situ Grain Resolved Stress Characterization During Damage Initiation in Cu-10%W Alloy

  • 3D Materials Science
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The evolution of stress during damage initiation and accumulation in a two-phase alloy consisting of a ductile copper (Cu) matrix with a randomly dispersed brittle tungsten (W) phase was studied using multiple non-destructive experimental probes. Neutron diffraction measurements were performed to examine the macroscopic strain partitioning between the two phases during a uniaxial tension test. The same material was then examined with high-energy x-ray diffraction microscopy (HEDM) and micro-computed tomography (\(\mu \hbox {-CT}\)) measurements to monitor micromechanical field evolution. The neutron diffraction data indicated a redistribution of load between the Cu and W phases as deformation proceeds. Using HEDM to monitor individual grain micromechanical behavior, an increase followed by decrease in hydrostatic stress and a similar stress triaxiality behavior were found to occur in a subset of W grains. These same W grains were found to be in close proximity to voids observed via tomography at later stages of deformation. From these observations, we conclude that high stress triaxiality development in the W particles leads to decohesion of the interface between the Cu and W phases. The debonded regions eventually grew and coalesced with neighboring voids leading to material failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Lassance, D. Fabregue, F. Delannay, and T. Pardoen, Progr. Mater. Sci. 52, 62 (2007).

    Article  Google Scholar 

  2. H. Li, M.W. Fu, J. Lu, and H. Yang, Int. J. Plast. 27, 147 (2011).

    Article  Google Scholar 

  3. J. Lemaitre, A Course on Damage Mechanics (Springer, 2012).

  4. G.M. Castelluccio, W.D. Musinski, and D.L. McDowell, Curr. Opin. Solid State Mater. Sci. 18, 180 (2014).

    Article  Google Scholar 

  5. A. Patra and D.L. McDowell, J. Mech. Phys. Solids, 74, 111 (2015).

    Article  MathSciNet  Google Scholar 

  6. T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe, Int. J. Plast. 25, 1655 (2009).

    Article  Google Scholar 

  7. D.L. McDowell, Int. J. Solids Struct. 37, 293 (2000).

    Article  Google Scholar 

  8. H.F. Poulsen, Three-dimensional X-ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics, vol. 2015 (Springer, 2004).

  9. M.P. Miller, R.M. Suter, U. Lienert, A.J. Beaudoin, E. Fontes, J. Almer, and J.C. Schuren, Synchrotron Radiat. News 25, 18 (2012).

    Article  Google Scholar 

  10. R. Pokharel, Materials Discovery and Design, ed. T. Lookman, S. Eidenbenz, F. Alexander, and C. Barnes (Cham: Springer, 2018)

  11. E.M. Lauridsen, S.R. Dey, R.W. Fonda, and D.J. Jensen, JOM 58, 40 (2006).

    Article  Google Scholar 

  12. E. Maire, O. Bouaziz, M. Di Michiel, and C. Verdu, Acta Mater. 56, 4954 (2008).

    Article  Google Scholar 

  13. C.M. Hefferan, J. Lind, S.F. Li, U. Lienert, A.D. Rollett, and R.M. Suter, Acta Mater. 60, 4311 (2012).

    Article  Google Scholar 

  14. R. Pokharel, J. Lind, A.K. Kanjarla, R.A. Lebensohn, S.F. Li, P. Kenesei, R.M. Suter, and A.D. Rollett, Annu. Rev. Condens. Matter Phys. 5, 317 (2014).

    Article  Google Scholar 

  15. M. Obstalecki, S.L. Wong, P.R. Dawson, and M.P. Miller, Acta Mater. 75, 259 (2014).

    Article  Google Scholar 

  16. J.C. Schuren, P.A. Shade, J.V. Bernier, S.F. Li, B. Blank, J. Lind, P. Kenesei, U. Lienert, R.M. Suter, T.J. Turner, and D.M. Dimiduk, Curr. Opin. Solid State Mater. Sci. 19, 235 (2015).

    Article  Google Scholar 

  17. K. Chatterjee, A. Venkataraman, T. Garbaciak, J. Rotella, M.D. Sangid, A.J. Beaudoin, P. Kenesei, J.S. Park, and A.L. Pilchak, Int. J. Solids Struct. 94, 35 (2016).

    Article  Google Scholar 

  18. D.C. Pagan, P.A. Shade, N.R. Barton, J.S. Park, P. Kenesei, D.B. Menasche, and J.V. Bernier, Acta Mater. 128, 406 (2017).

    Article  Google Scholar 

  19. D. Naragani, M.D. Sangid, P. Shade, J.C. Schuren, H. Sharma, J.S. Park, P. Kenesei, J.V. Bernier, T.J. Turner, and I. Parr, Acta Mater. 137, 71 (2017).

    Article  Google Scholar 

  20. V. Tari, R.A. Lebensohn, R. Pokharel, T.J. Turner, P.A. Shade, J.V. Bernier, and A.D. Rollett, Acta Mater. 154, 273 (2018).

    Article  Google Scholar 

  21. A.N. Bucsek, D. Dale, J.Y.P. Ko, Y. Chumlyakov, and A.P. Stebner, Acta Crystallogr. Sect. A Found. Adv. 74, 425 (2018).

    Article  Google Scholar 

  22. C.F. Chen, R. Pokharel, M.J. Brand, E.L. Tegtmeier, B. Clausen, D.E. Dombrowski, T.L. Ickes, and R.A. Lebensohn, J. Mater. Sci. 52, 1172 (2017).

    Article  Google Scholar 

  23. H.F. Poulsen, Appl. Phys. A 74, 1673 (2002).

    Article  Google Scholar 

  24. A.C. Larson, R.B. Von Dreele, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), LAUR 86-748 (1994).

  25. J.V. Bernier, N.R. Barton, U. Lienert, and M.P. Miller, J. Strain Anal. Eng. Des.46, 527 (2011).

    Article  Google Scholar 

  26. N.Y. Juul, G. Winther, D. Dale, M.K.A. Koker, P. Shade, and J. Oddershede, Scripta Mater. 120, 1 (2016).

    Article  Google Scholar 

  27. D.E. Boyce and J.V. Bernier, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), Tech Report (2013).

  28. J.F. Hunter, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech Report (2011).

  29. S.G. Epstein and O.N. Carlson, Acta Metall., 13, 487 (1965).

    Article  Google Scholar 

  30. F.H. Featherston and J.R. Neighbours, Phys. Rev. 130, 1324 (1963).

    Article  Google Scholar 

  31. F.A. McClintock, J. Appl. Mech. 35, 363 (1968).

    Article  Google Scholar 

  32. J.R. Rice and D.M. Tracey, J. Mech. Phys. Solids 17, 201 (1969).

    Article  Google Scholar 

  33. R.C. Hurley, E.B. Herbold, and D.C. Pagan, J. Appl. Crystallogr. 51, 1021 (2018).

    Article  Google Scholar 

  34. C. Chu and A. Needleman, J. Eng. Mater. Technol. 102, 249 (1980).

    Article  Google Scholar 

  35. A. Needleman and V. Tvergaard, Int. J. Fract. 101, 1 (2000).

  36. R.A. Lebensohn, A.K. Kanjarla, and P. Eisenlohr, Int. J. Plast. 32, 59 (2012).

    Article  Google Scholar 

  37. R.A. Lebensohn, J.P. Escobedo, E.K. Cerreta, D. Dennis-Koller, C.A. Bronkhorst, and J.F. Bingert, Acta Mater. 61, 6918 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC for the National Nuclear Security Administration of the US Department of Energy (contract no. 89233218CNA000001), specifically the Laboratory Directed Research and Development (LDRD) program (Project 20140114DR) and Science Campaign 2. The use of F2 Beamline at CHESS and SMARTS Beamline at LANSCE is also acknowledged. CHESS is supported by the NSF award DMR-1332208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeju Pokharel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokharel, R., Lebensohn, R.A., Pagan, D.C. et al. In-Situ Grain Resolved Stress Characterization During Damage Initiation in Cu-10%W Alloy. JOM 72, 48–56 (2020). https://doi.org/10.1007/s11837-019-03692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03692-5

Navigation