Skip to main content
Log in

Multiscale Assessment of Deformation Induced by Hydrogen Environment-Assisted Cracking in a Peak-Aged Ni-Cu Superalloy

  • Hydrogen Effects on Material Performance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A multiscale approach leveraging electron backscatter diffraction (S-EBSD), high resolution EBSD (HR-EBSD), and transmission electron microscopy (TEM) was employed to assess the deformation induced proximate to the crack path by hydrogen environment-assisted cracking (HEAC) in peak-aged Monel K-500. Kernel average misorientation (KAM) results calculated from S-EBSD indicate that the deformation pertinent to HEAC is localized to within 25 μm of the crack path. Geometrically necessary dislocation (GND) density maps calculated from HR-EBSD confirm this localization. The evaluation of the deformation distribution in three separate grains along the crack path using complementary HR-EBSD and TEM suggest a qualitative similarity in dislocation density between the two techniques, though HR-EBSD is unable to spatially resolve the fine dislocation structures observed via TEM. However, non-negligible differences in dislocation patterning were observed in the three evaluated grains, highlighting the importance of a multiscale approach for characterizing deformation to understand the governing microstructural and mechanical factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.P. Gangloff, Comprehensive Structural Integrity, ed. I. Milne, R.O. Ritchie, and B. Karihaloo (New York: Elsevier Science, 2003), pp. 31–101.

    Google Scholar 

  2. R.P. Gangloff, Environment-Induced Cracking of Materials, ed. S.A. Shipilov, R.H. Jones, J.M. Olive, and R.B. Rebak (Amsterdam: Elsevier, 2008), pp. 141–165.

    Google Scholar 

  3. R.P. Gangloff, Corrosion 72, 862 (2016).

    Google Scholar 

  4. Z.D. Harris, J.D. Dolph, G.L. Pioszak, B.C. Rincon Troconis, J.R. Scully, and J.T. Burns, Metall. Mater. Trans. A 47, 3488 (2016).

    Google Scholar 

  5. Z.D. Harris and J.T. Burns, Mater. Sci. Eng. A 764, 138249 (2019).

    Google Scholar 

  6. R.P. Gangloff, H.M. Ha, J.T. Burns, and J.R. Scully, Metall. Mater. Trans. A 45, 3814 (2014).

    Google Scholar 

  7. J.T. Burns, Z.D. Harris, J.D. Dolph, and R.P. Gangloff, Metall. Mater. Trans. A 47, 990 (2016).

    Google Scholar 

  8. H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994).

    Google Scholar 

  9. R.A. Oriani, Berichte Der Bunsen-Gesellschaft Fur Phys. Chemie 76, 848 (1972).

    Google Scholar 

  10. S.K. Lawrence, Y. Yagodzinskyy, H. Hänninen, E. Korhonen, F. Tuomisto, Z.D. Harris, and B.P. Somerday, Acta Mater. 128, 218 (2017).

    Google Scholar 

  11. M. Nagumo and K. Takai, Acta Mater. 165, 722 (2019).

    Google Scholar 

  12. S.P. Lynch, Acta Metall. 36, 2639 (1988).

    Google Scholar 

  13. I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren, Metall. Mater. Trans. B 46B, 1085 (2015).

    Google Scholar 

  14. Z.D. Harris, S.K. Lawrence, D.L. Medlin, G. Guetard, J.T. Burns, and B.P. Somerday, Acta Mater. 158, 180 (2018).

    Google Scholar 

  15. A. Tehranchi and W.A. Curtin, Eng. Fract. Mech. 216, 106502 (2019).

    Google Scholar 

  16. M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson, Acta Mater. 60, 2739 (2012).

    Google Scholar 

  17. K.M. Bertsch, S. Wang, A. Nagao, and I.M. Robertson, Mater. Sci. Eng. A 760, 58 (2019).

    Google Scholar 

  18. S. Wang, A. Nagao, K. Edalati, Z. Horita, and I.M. Robertson, Acta Mater. 135, 96 (2017).

    Google Scholar 

  19. S. Wang, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto, and I.M. Robertson, Acta Mater. 69, 275 (2014).

    Google Scholar 

  20. M.L. Martin, P. Sofronis, I.M. Robertson, T. Awane, and Y. Murakami, Int. J. Fatigue 57, 28 (2013).

    Google Scholar 

  21. S. Wang, A. Nagao, P. Sofronis, and I.M. Robertson, Acta Mater. 144, 164 (2018).

    Google Scholar 

  22. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson, Acta Mater. 60, 5182 (2012).

    Google Scholar 

  23. K.E. Nygren, K.M. Bertsch, S. Wang, H. Bei, A. Nagao, and I.M. Robertson, Curr. Opin. Solid State Mater. Sci. 22, 1 (2018).

    Google Scholar 

  24. K.E. Nygren, S. Wang, K.M. Bertsch, H. Bei, A. Nagao, and I.M. Robertson, Acta Mater. 157, 218 (2018).

    Google Scholar 

  25. C. Keller, E. Hug, R. Retoux, and X. Feaugas, Mech. Mater. 42, 44 (2010).

    Google Scholar 

  26. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 40, 205 (1992).

    Google Scholar 

  27. W.A. McInteer, A.W. Thompson, and I.M. Bernstein, Acta Metall. 28, 887 (1980).

    Google Scholar 

  28. I.M. Robertson and H.K. Birnbaum, Scr. Metall. 18, 269 (1984).

    Google Scholar 

  29. U.F. Kocks and H. Mecking, Prog. Mater Sci. 48, 171 (2003).

    Google Scholar 

  30. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd ed. (Routledge: Taylor & Francis, 2005).

    MATH  Google Scholar 

  31. Y. Ogawa, D. Birenis, H. Matsunaga, A. Thøgersen, Ø. Prytz, O. Takakuwa, and J. Yamabe, Scr. Mater. 140, 13 (2017).

    Google Scholar 

  32. D. Birenis, Y. Ogawa, H. Matsunaga, O. Takakuwa, J. Yamabe, Ø. Prytz, and A. Thøgersen, Acta Mater. 156, 245 (2018).

    Google Scholar 

  33. Y. Ogawa, D. Birenis, H. Matsunaga, O. Takakuwa, J. Yamabe, Ø. Prytz, and A. Thøgersen, Mater. Sci. Eng. A 733, 316 (2018).

    Google Scholar 

  34. Y.Z. Chen, H.P. Barth, M. Deutges, C. Borchers, F. Liu, and R. Kirchheim, Scr. Mater. 68, 743 (2013).

    Google Scholar 

  35. D. Wan, A. Alvaro, V. Olden, and A. Barnoush, Int. J. Hydrogen Energy 44, 5030 (2019).

    Google Scholar 

  36. D. Birenis, Y. Ogawa, H. Matsunaga, O. Takakuwa, J. Yamabe, Ø. Prytz, and A. Thøgersen, Mater. Sci. Eng. A 756, 396 (2019).

    Google Scholar 

  37. Y. Ogawa, O. Takakuwa, S. Okazaki, K. Okita, Y. Funakoshi, H. Matsunaga, and S. Matsuoka, Corros. Sci. 161, 108186 (2019).

    Google Scholar 

  38. Y. Ogawa, S. Okazaki, O. Takakuwa, and H. Matsunaga, Scr. Mater. 157, 95 (2018).

    Google Scholar 

  39. M. Connolly, M. Martin, P. Bradley, D. Lauria, A. Slifka, R. Amaro, C. Looney, and J.S. Park, Acta Mater. 180, 272 (2019).

    Google Scholar 

  40. E.D. Merson, P.N. Myagkikh, V.A. Poluyanov, D.L. Merson, and A. Vinogradov, Eng. Fract. Mech. 214, 177 (2019).

    Google Scholar 

  41. T.B. Britton, J.L.R. Hickey, and I.O.P. Conf, Ser. Mater. Sci. Eng. 304, 012003 (2018).

    Google Scholar 

  42. T. Ben Britton, J. Jiang, P.S. Karamched, and A.J. Wilkinson, JOM 65, 1245 (2013).

    Google Scholar 

  43. A.J. Wilkinson, G. Meaden, and D.J. Dingley, Ultramicroscopy 106, 307 (2006).

    Google Scholar 

  44. J. Jiang, T.B. Britton, and A.J. Wilkinson, Ultramicroscopy 125, 1 (2013).

    Google Scholar 

  45. T.J. Ruggles, T.M. Rampton, A. Khosravani, and D.T. Fullwood, Ultramicroscopy 164, 1 (2016).

    Google Scholar 

  46. Y.S.J. Yoo, H. Lim, J. Emery, and J. Kacher, Acta Mater. 174, 81 (2019).

    Google Scholar 

  47. B.E. Dunlap, T.J. Ruggles, D.T. Fullwood, B. Jackson, and M.A. Crimp, Ultramicroscopy 184, 125 (2018).

    Google Scholar 

  48. J. Jiang, T.B. Britton, and A.J. Wilkinson, Acta Mater. 61, 7227 (2013).

    Google Scholar 

  49. T. Benjamin Britton and A.J. Wilkinson, Acta Mater. 60, 5773 (2012).

    Google Scholar 

  50. P.S. Karamched and A.J. Wilkinson, Acta Mater. 59, 263 (2011).

    Google Scholar 

  51. P.D. Littlewood and A.J. Wilkinson, Acta Mater. 60, 5516 (2012).

    Google Scholar 

  52. J. Jiang, J. Yang, T. Zhang, J. Zou, Y. Wang, F.P.E. Dunne, and T.B. Britton, Acta Mater. 117, 333 (2016).

    Google Scholar 

  53. B.C.R. Troconis, Z.D. Harris, H. Ha, J.T. Burns, and J.R. Scully, Mater. Sci. Eng. A 703, 533 (2017).

    Google Scholar 

  54. E. Martínez-Pañeda, Z.D. Harris, S. Fuentes-Alonso, J.R. Scully, and J.T. Burns, Corros. Sci. 163, 108291 (2020).

    Google Scholar 

  55. J.K. Donald and J. Ruschau, Fatigue Crack Measurement: Techniques and Applications, ed. K.J. Marsh, R.A. Smith, and R.O. Ritchie (West Midlands: EMAS, 1991), pp. 11–37.

    Google Scholar 

  56. H.H. Johnson, Mater. Res. Stand. 5, 442 (1965).

    Google Scholar 

  57. K.-H. Schwalbe and D. Hellmann, J. Test. Eval. 9, 218 (1981).

    Google Scholar 

  58. A.S. Popernack, Loading Rate Effects on Hydrogen-Enhanced Cracking Behavior of Ni- and Co-Based Superalloys for Marine Applications (Charlottesville: University of Virginia, 2017).

    Google Scholar 

  59. V. Kumar, M.D. German, and C.F. Shih, An Engineering Approach for Elastic-Plastic Fracture Analysis (Palo Alto: Electric Power Research Institute, 1981).

    Google Scholar 

  60. A.W. Thompson, Z.D. Harris, and J.T. Burns, Micron 118, 43 (2019).

    Google Scholar 

  61. B. Fultz and J.M. Howe, Transmission Electron Microscopy and Diffractometry of Materials, 3rd ed. (Berlin: Springer, 2008).

    Google Scholar 

  62. L.N. Brewer, D.P. Field, and C.C. Merriman, Electron Backscatter Diffraction in Materials Science, ed. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field (Berlin: Springer, 2009), pp. 251–262.

    Google Scholar 

  63. J.A. Wert, X. Huang, G. Winther, W. Pantleon, and H.F. Poulsen, Mater. Today 10, 24 (2007).

    Google Scholar 

  64. N. Hansen, X. Huang, and G. Winther, Mater. Sci. Eng. A 494, 61 (2008).

    Google Scholar 

  65. E. Martinez-Paneda, C.F. Niordson, and R.P. Gangloff, Acta Mater. 117, 321 (2016).

    Google Scholar 

  66. P.R. Swann, Corrosion 19, 102t (1963).

    Google Scholar 

  67. A.W. Thompson and I.M. Bernstein, Advances in Corrosion Science and Technology, ed. M.G. Fontana and R.W. Staehle (Berlin: Springer, 1980), pp. 53–175.

    Google Scholar 

  68. Z.D. Harris, J.J. Bhattacharyya, J.A. Ronevich, S.R. Agnew, and J.T. Burns, Acta Mater. 186, 616 (2020).

    Google Scholar 

Download references

Acknowledgements

Helpful discussions with Mr. Richard White, Prof. Richard Gangloff, Prof. John Scully, and Prof. Sean Agnew at the University of Virginia, Dr. Brian Somerday at Southwest Research Institute, and Dr. Timothy Ruggles at Sandia National Laboratories are gratefully acknowledged. This research was financially supported by the DoD Corrosion Policy Office through the Technical Corrosion Collaboration program under Contract #FA7000-14-2-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary D. Harris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, Z.D., Thompson, A.W. & Burns, J.T. Multiscale Assessment of Deformation Induced by Hydrogen Environment-Assisted Cracking in a Peak-Aged Ni-Cu Superalloy. JOM 72, 1993–2002 (2020). https://doi.org/10.1007/s11837-020-04107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04107-6

Navigation