Skip to main content
Log in

Nondestructive approaches for 3-D materials characterization

  • Overview
  • 3-D Characterization: Methods and Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Three-dimensional (3-D) microstructural characterization has proven to be indispensable for the thorough understanding of the often highly complex microstructures studied in materials science. However, most 3-D characterization techniques of opaque materials such as metals and ceramics are destructive and therefore prohibit 3-D studies of the dynamic microstructural evolution processes. In this paper we describe two complimentary techniques capable of nondestructive 3-D characterization and provide examples of the application of these techniques to investigate microstructural evolution processes in metallic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Kral et al., “3-D Analysis of Microstructures,”Materials Characterization 2000, 45 (1) (2000) pp. 17–23.

    Article  CAS  Google Scholar 

  2. L. Margulies, G. Winther, and H.F. Poulsen, “In Situ Measurement of Grain Rotation during Deformation of Polycrystals,”Science, 291 (2001), p. 2392.

    Article  CAS  Google Scholar 

  3. S.E. Offerman, “Grain Nucleation and Growth during Phase Transformations,”Science, 298 (2002), p. 1003.

    Article  CAS  Google Scholar 

  4. S. Schmidt et al., “Watching the Growth of Bulk Grains during Recrystallization of Deformed Metals,”Science, 305 (2004), p. 229.

    Article  CAS  Google Scholar 

  5. G. Spanos et al.,Proc. 25th Risø Int. Symp. Mater. Sci., ed. C. Gundlach et al. (Roskilde, Denmark: Risø National Laboratory, 2004), p. 137.

    Google Scholar 

  6. G. Spanos, organizer, Viewpoint set no. 41 “3-D Characterization and Analysis of Materials,”Scripta Mater., 55 (2006).

  7. D. Isheim et al., “An Atom-Probe Tomographic Study of the Temporal Evolution of the Nanostructure of Fe−Cu based High-Strength Low-Carbon Steels,”Scripta Mater., 55 (2006), pp. 35–40.

    Article  CAS  Google Scholar 

  8. M.D. Uchic et al., “3-D Microstructural Characterization of Nuckel Superalloys via Serial-Sectioning using a Dual Beam FIB-SEM,”Scripta Mater., 55 (2006), pp. 23–28.

    Article  CAS  Google Scholar 

  9. J. Alkemper and P.W. Voorhees, “Quantitative Serial Sectioning Analysis,”J. Microsc., 201 (2001), pp. 388–394.

    Article  CAS  Google Scholar 

  10. J.E. Spowart, H.M. Mullens, and B.T. Puchala, “Collecting and Analyzing Microstructures in Three Dimensions: A Fully Automated Approach,”JOM, 55 (10) (2003), pp. 35–37.

    Article  CAS  Google Scholar 

  11. P. Cloetens et al., “Hard X-ray Phase Imaging using Simple Propagation of a Coherent Synchrotron Radiation Beam,”J. Phys. D: Appl. Phys. 32 (1999), p. A145.

    Article  CAS  Google Scholar 

  12. J. Baruchel et al., “Advances in Synchrotron Radiation Microtomography,”Scripta Mater., 55 (2006), pp. 41–46.

    Article  CAS  Google Scholar 

  13. R.W. Fonda et al., “2-D and 3-D Analyses of Sigma Precipitates and Porosity in a Superaustenitic Stainless Steel,” submitted for publication toMet. Mat. Trans. A.

  14. A.M. Talbot and D.E. Furman, “Sigma Formation and Its Effect on the Impact Properties of Fe−Ni−Cr Alloys,”Trans. ASM, 45 (1953), pp. 429–442.

    Google Scholar 

  15. H.F. Poulsen,3-D X-Ray Diffraction Microscopy. Mapping Polycrystals and their Dynamics (Berlin: Springer, 2004).

    Google Scholar 

  16. E.M. Lauridsen et al., “Recrystallization Kinetics of Individual Bulk Grains in 90% Cold-Rolled Aluminium,”Acta Materialia, 51 (2003), p. 4423.

    Article  CAS  Google Scholar 

  17. N. Iqbal et al., “Real-Time Observation of Grain Nucleation and Growth during Solidification of Aluminium Alloys,”Acta Materialia, 53 (2005), p. 2875.

    Article  CAS  Google Scholar 

  18. H.I. Aaronson et al., “Sympathetic Nucleation: An Overview,”Mater. Sci. Eng. B, 32 (1995), pp. 107–123.

    Article  Google Scholar 

  19. R.W. Fonda et al., unpublished research (2006).

  20. E.M. Lauridsen et al., “Tracking: A Method for Structural Characterization of Grains in Powders or Polycrystals,”J. Appl. Cryst., 34 (2001), p. 744.

    Article  CAS  Google Scholar 

  21. H.F. Poulsen et al., “3-D Maps of Grain Boundaries and the Stress State of Individual Grains in Polycrystals and Powders,”J. Appl. Cryst., 34 (2001), p. 751.

    Article  CAS  Google Scholar 

  22. H.F. Poulsen and X. Fu, “Generation of Grain Maps by an Algebraic Reconstruction Technique,”J. Appl. Cryst., 36 (2003), p. 1062.

    Article  CAS  Google Scholar 

  23. S.F. Nielsen et al.,Proc. 21st Risø Int. Symp. on Mat. Sci., ed. N. Hansen et al. (Roskilde, Denmark: Risø National Laboratory, 2000), p. 473.

    Google Scholar 

  24. O. Hignette et al., “Efficient Sub 100 nm Focusing of Hard X-rays,”Rev. Sci. Inst., 76 (6) (2005).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauridsen, E.M., Dey, S.R., Fonda, R.W. et al. Nondestructive approaches for 3-D materials characterization. JOM 58, 40–44 (2006). https://doi.org/10.1007/BF02748494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02748494

Keywords

Navigation