Skip to main content
Log in

Effect of Roasting Characteristics of Vanadium-Rich Slag on Its Vanadium Leaching Behavior

  • Recycling Methods for Industrial Metals and Minerals
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of the roasting characteristics of vanadium-rich slag on its vanadium leaching behavior was investigated to enable its effective utilization. Thermodynamic analysis of the sodium roasting of vanadium-rich slag was performed for the first time. The effect of the roasting temperature, roasting time, quantity of sodium carbonate (Na2CO3) added, and particle size of the raw material on the vanadium leaching was studied. The results showed that the oxidation reactions of vanadium oxides, fayalite (Fe2SiO4), and vanadium-iron spinel (FeV2O4), and the formation of sodium vanadate were feasible within the roasting temperature range. The sodium roasting was significant for the subsequent vanadium leaching process. The optimum process conditions for sodium roasting were roasting temperature of 850°C, roasting time of 60 min, Na2CO3 addition of 20%, and particle size of − 74 μm, resulting in an ideal vanadium leaching ratio. The results of the current study provide experimental evidence to establish a correlation between the roasting characteristics of vanadium-rich slag and its vanadium leaching behavior, as well as a theoretical and technical basis for effective utilization of vanadium-rich slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.M. Zhang, K.Q. Feng, and H.F. Yue, JOM 68, 2525 (2016).

    Article  Google Scholar 

  2. S. Wang, Y.F. Guo, T. Jiang, L. Yang, F. Chen, F.Q. Zheng, X.L. Xie, and M.J. Tang, JOM 69, 1646 (2017).

    Article  Google Scholar 

  3. Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, Hydrometallurgy 109, 116 (2011).

    Article  Google Scholar 

  4. K. Mazurek, Hydrometallurgy 134, 26 (2013).

    Article  Google Scholar 

  5. R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 16, 793 (2003).

    Article  Google Scholar 

  6. T. Hu, X.W. Lv, and C.G. Bai, Steel Res. Int. 87, 494 (2016).

    Article  Google Scholar 

  7. H.M. Long, T.J. Chun, P. Wang, Q.M. Meng, Z.X. Di, and J.X. Li, Metall. Mater. Trans. B 47, 1765 (2016).

    Article  Google Scholar 

  8. L.S. Zhao, L.N. Wang, T. Qi, D.S. Chen, H.X. Zhao, and Y.H. Liu, Hydrometallurgy 149, 106 (2014).

    Article  Google Scholar 

  9. S. Wang, Y.F. Guo, T. Jiang, L. Yang, F. Chen, F.Q. Zheng, X.L. Xie, and M.J. Tang, JOM 69, 1646 (2017).

    Article  Google Scholar 

  10. X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai, ISIJ Int. 53, 1115 (2013).

    Article  Google Scholar 

  11. T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu, Metall. Mater. Trans. B 44, 252 (2013).

    Article  Google Scholar 

  12. S. Samanta, S. Mukherjee, and R. Dey, JOM 67, 467 (2015).

    Article  Google Scholar 

  13. M.Y. Wang, P.F. Xian, X.W. Wang, and B.W. Li, JOM 67, 369 (2015).

    Article  Google Scholar 

  14. X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Trans. Nonferr. Metals Soc. China 21, 1860 (2011).

    Article  Google Scholar 

  15. M. Li, H. Du, S.L. Zheng, S.N. Wang, Y. Zhang, B. Liu, A.B. Dreisinger, and Y. Zhang, JOM 69, 1970 (2017).

    Article  Google Scholar 

  16. G.Q. Zhang, T.A. Zhang, G.Z. Lv, Y. Zhang, Y. Liu, and W.G. Zhang, JOM 68, 577 (2016).

    Article  Google Scholar 

  17. M.S. Villarreal, B.I. Kharisov, L.M. Torres-Martínez, and V.N. Elizondo, Ind. Eng. Chem. Res. 38, 4624 (1999).

    Article  Google Scholar 

  18. R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 16, 793 (2003).

    Article  Google Scholar 

  19. X.S. Li and B. Xie, Int. J. Miner. Metall. Mater. 19, 595 (2012).

    Article  Google Scholar 

  20. C.P.J.V. Vuuren and P.P. Stander, Thermochim. Acta 254, 227 (1995).

    Article  Google Scholar 

  21. L. Yu, Y.C. Dong, G.Z. Ye, and S.C. Du, Ironmak. Steelmak. 34, 131 (2007).

    Article  Google Scholar 

  22. X.Y. Chen, X.Z. Lan, Q.L. Zhang, H.Z. Ma, and J. Zhou, Trans. Nonferr. Metals Soc. China 20, 123 (2010).

    Article  Google Scholar 

  23. K. Yang, X.Y. Zhang, X.D. Tian, Y.L. Yang, and Y.B. Chen, Hydrometallurgy 103, 7 (2010).

    Article  Google Scholar 

  24. Z.W. Pan, D.W. Wang, H. Du, G. Chen, S.L. Zheng, and J. Cent, South Univ. 24, 2171 (2014).

    Google Scholar 

  25. X.J. Zhai, Y. Fu, X. Zhang, L.Z. Ma, and F. Xie, Hydrometallurgy 99, 189 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Fundamental Research Funds for the Central Universities (N182503032), Postdoctoral International Exchange Program (Dispatch Project), and National Natural Science Foundation of China (51774071 and 51374061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zheng, H. & Shen, F. Effect of Roasting Characteristics of Vanadium-Rich Slag on Its Vanadium Leaching Behavior. JOM 71, 3190–3195 (2019). https://doi.org/10.1007/s11837-019-03578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03578-6

Navigation