Skip to main content
Log in

Kinetics of Roasting Reaction Between Synthetic Scheelite and Magnesium Chloride

  • Metallurgical Kinetics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Conversion of CaWO4 to MgWO4 by roasting scheelite with MgCl2 is the key step for the subsequent alkaline extraction of tungsten from scheelite. In this study, the factors influencing the conversion efficiency of MgWO4 during the roasting of synthetic scheelite and MgCl2 were evaluated, and the reaction kinetics were explored by model fitting. The results indicate that the conversion efficiency increases with an increase in roasting temperature and magnesium chloride dosage, and that a decrease in mineral particle size also increases the conversion efficiency. Moreover, the roasting reaction between synthetic scheelite and MgCl2 at 773–923 K fits well to the Avrami–Erofeev kinetic model, and the roasting reaction is controlled by both diffusion and chemical reaction. This study contributes to a better understanding of the roasting process of scheelite with MgCl2 and the development of a new route for extracting tungsten from scheelite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Lassner and W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (New York: Kluwer Academic, 1999).

    Book  Google Scholar 

  2. X.B. Li, L.T. Shen, Q.S. Zhou, Z.H. Peng, G.H. Liu, and T.G. Qi, Hydrometallurgy 171, 106 (2017).

    Article  Google Scholar 

  3. K. Srinivas, T. Sreenivas, R. Natarajan, and N.P.H. Padmanabhan, Hydrometallurgy 58, 43 (2000).

    Article  Google Scholar 

  4. J.I. Martins, Miner. Process. Extr. Metall. Rev. 35, 23 (2014).

    Article  Google Scholar 

  5. L.T. Shen, X.B. Li, Q.S. Zhou, Z.H. Peng, G.H. Liu, T.G. Qi, and P. Taskinen, JOM 70, 161 (2018).

    Article  Google Scholar 

  6. P.M. Sun, H.G. Li, Y.J. Li, Z.W. Zhao, G.S. Huo, Z.M. Sun, and M.S. Liu, J. Cent. South Univ. 10, 297 (2003).

    Article  Google Scholar 

  7. Y.L. Li and Z.W. Zhao, JOM 69, 1106 (2017).

    Article  Google Scholar 

  8. J.P. Martins, Hydrometallurgy 42, 221 (1996).

    Article  Google Scholar 

  9. J.T. Li and Z.W. Zhao, Hydrometallurgy 163, 55 (2016).

    Article  Google Scholar 

  10. W.T. Liu, Y.L. Li, D.W. Zeng, J.T. Li, and Z.W. Zhao, JOM 70, 2003 (2018).

    Article  Google Scholar 

  11. E. Lassner, W.D. Schubert, E. Lüderitz, and H.U. Wolf, Tungsten, Tungsten Alloys, and Tungsten Compounds. Ullmann’s Encyclopedia of Industrial Chemistry (Weinheim: Wiley, 2012).

    Google Scholar 

  12. D.D. Gong, K.G. Zhou, C.H. Peng, D.W. He, and W. Chen, Hydrometallurgy 182, 75 (2018).

    Article  Google Scholar 

  13. L. Liu, J.L. Xue, K. Liu, and J. Zhu, JOM 68, 2455 (2016).

    Article  Google Scholar 

  14. W.J. Zhang, J.T. Li, and Z.W. Zhao, Int. J. Refract. Met. Hard Mater. 52, 78 (2015).

    Article  Google Scholar 

  15. R.P.S. Gaur, JOM 58, 45 (2006).

    Article  Google Scholar 

  16. D.D. Gong, K.G. Zhou, J.J. Li, C.H. Peng, and W. Chen, JOM 70, 2846 (2018).

    Article  Google Scholar 

  17. Y.L. Li, J.H. Yang, and Z.W. Zhao, JOM 69, 1958 (2017).

    Article  Google Scholar 

  18. Z.W. Zhao, J.T. Li, S.B. Wang, H.G. Li, M.S. Liu, P.M. Sun, and Y.J. Li, Hydrometallurgy 108, 152 (2011).

    Article  Google Scholar 

  19. Y.L. Liao and Z.W. Zhao, JOM 70, 581 (2018).

    Article  Google Scholar 

  20. L.S. Wan, X.J. Huang, D.F. Deng, H.C. Li, and Y.M. Chen, Hydrometallurgy 154, 17 (2015).

    Article  Google Scholar 

  21. Z.W. Zhao and H.G. Li, Metall. Mater. Trans. B 39, 519 (2008).

    Article  MathSciNet  Google Scholar 

  22. L. Yang, L.S. Wan, and X.W. Jin, Can. Metall. Q. 57, 439 (2018).

    Article  Google Scholar 

  23. Y.L. Liao and Z.W. Zhao, Hydrometallurgy 169, 515 (2017).

    Article  Google Scholar 

  24. D.D. Gong, K.G. Zhou, C.H. Peng, J.J. Li, and W. Chen, Miner. Eng. 132, 238 (2019).

    Article  Google Scholar 

  25. S. Ilhan, A.O. Kalpakli, C. Kahruman, and I. Yusufoglu, Hydrometallurgy 136, 15 (2013).

    Article  Google Scholar 

  26. A.O. Kalpakli, S. Ilhan, C. Kahruman, and I. Yusufoglu, Hydrometallurgy 121-124, 7 (2012).

    Article  Google Scholar 

  27. Roine, A., HSC Chemistry, vers. 9.0. Outotec Research Oy, Pori (Finland). http://www.outotec.com/products/digitals-solutions/hsc-chemistry/. Accessed Mar 2016.

  28. S.X. Jin, Physical Chemistry, 5th ed., Vol. 1 (Beijing: Higher Education Press, 1989).

    Google Scholar 

  29. L.T. Shen, X.B. Li, Q.S. Zhou, Z.H. Peng, G.H. Liu, T.G. Qi, and P. Taskinen, JOM 70, 2499 (2018).

    Article  Google Scholar 

  30. K.G. Zhou, C.Y. Teng, X.K. Zhang, C.H. Peng, and W. Chen, Hydrometallurgy 182, 57 (2018).

    Article  Google Scholar 

  31. N. Habibul and W. Chen, Sci. Total Environ. 643, 479 (2018).

    Article  Google Scholar 

  32. C. Kahruman and I. Yusufoglu, Hydrometallurgy 81, 182 (2006).

    Article  Google Scholar 

  33. A. Kalpakli and I. Yusufoglu, Metall. Mater. Trans. B 38, 279 (2007).

    Article  Google Scholar 

  34. M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Article  Google Scholar 

  35. L.H. Sperling, Introduction to Physical Polymer Science, 4th ed. (New York: Wiley, 2006), p. 274.

    Google Scholar 

  36. G.X. He, Z.W. Zhao, X.B. Wang, J.T. Li, X.Y. Chen, L.H. He, and X.H. Liu, Hydrometallurgy 144–145, 140 (2014).

    Article  Google Scholar 

  37. G.Q. Zhang, T.A. Zhang, G.Z. Lu, Y. Zhang, Y. Liu, and W.G. Zhang, JOM 68, 577 (2016).

    Article  Google Scholar 

  38. Z.W. Zhao, Y. Liang, and H.G. Li, Int. J. Refract. Met. Hard Mater. 29, 289 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 21707167) and the Fundamental Research Funds for the Central Universities of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, D., Zhou, K., Li, J. et al. Kinetics of Roasting Reaction Between Synthetic Scheelite and Magnesium Chloride. JOM 71, 2827–2833 (2019). https://doi.org/10.1007/s11837-019-03492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03492-x

Navigation