Skip to main content
Log in

Deformation Capacity of a Ternary Magnesium Alloy in a Gas-Forming Process at Elevated Temperatures

  • Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

An experimental ternary magnesium alloy, Mg-2Zn-2Ce, has been investigated. The attention was focused on the possibility of using this alloy for an unconventional sheet-forming process based on a flexible medium (gas-forming) for applications where weight-saving and complex shapes are required. Free inflation tests were performed at temperatures ranging from 350°C to 450°C, employing either a constant forming gas pressure or pressure jumps during the same test in order to evaluate the strain rate sensitivity, m, of the material. Interrupted free inflation tests at known dome heights were also conducted to investigate both the strain and the microstructural evolution. In addition, the texture behavior of the alloy was studied after hot rolling, revealing a weak deformation texture. Even though the material was in the as-cast condition, the alloy showed a good deformation capacity and contribution due to grain boundary sliding, indicating a potential for superplastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.J. Joost, JOM 64, 1032 (2012).

    Article  Google Scholar 

  2. D. Sorgente, G. Palumbo, A. Piccininni, P. Guglielmi, and L. Tricarico, Int. J. Adv. Manuf. Technol. 90, 1 (2017).

    Article  Google Scholar 

  3. M.O. Pekguleryuz, K. Kainer, and A.A. Kaya, eds., Fundamentals of Magnesium Alloy Metallurgy (Amsterdam: Elsevier, 2013).

    Google Scholar 

  4. S. Sandlöbes, M. Friák, Z. Pei, J. Neugebauer, and D. Raabe, Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  5. S. Tekumalla, S. Seetharaman, A. Almajid, and M. Gupta, Metals 5, 1 (2014).

    Article  Google Scholar 

  6. R.K. Mishra, A.K. Gupta, P. Rao Rama, A.K. Sachdev, A.M. Kumar, and A.A. Luo, Scr. Mater. 59, 562 (2008).

    Article  Google Scholar 

  7. A.A. Luo, R.K. Mishra, and A.K. Sachdev, Scr. Mater. 64, 410 (2011).

    Article  Google Scholar 

  8. J. Zhang, Y. Dou, and H. Dong, Scr. Mater. 89, 13 (2014).

    Article  Google Scholar 

  9. J. Zhang, Y. Dou, and Y. Zheng, Scr. Mater. 80, 17 (2014).

    Article  Google Scholar 

  10. S. Tekumalla, S. Seetharaman, N.Q. Bau, W.L.E. Wong, C.S. Goh, R. Shabadi, and M. Gupta, J. Eng. Mater. Technol. 138, 031011 (2016).

    Article  Google Scholar 

  11. S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, and R. Gonzalez-Martinez, Acta Mater. 59, 429 (2011).

    Article  Google Scholar 

  12. S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, and D. Raabe, Acta Mater. 60, 3011 (2012).

    Article  Google Scholar 

  13. M.R. Barnett, Mater. Sci. Eng. A 464, 8 (2007).

    Article  Google Scholar 

  14. B.L. Wu, Y.H. Zhao, X.H. Du, Y.D. Zhang, F. Wagner, and C. Esling, Mater. Sci. Eng. A 527, 4334 (2010).

    Article  Google Scholar 

  15. D.R. Lide, Handb. Chem. Phys. 53, 2616 (2003).

    Google Scholar 

  16. E.A. Ball and P.B. Prangnell, Scr. Metall. Mater. 31, 111 (1994).

    Article  Google Scholar 

  17. A. Imandoust, J. Mater. Sci. 52, 1 (2017).

    Article  Google Scholar 

  18. S. Sandlöbes, Z. Pei, M. Friák, L.-F. Zhu, F. Wang, S. Zaefferer, D. Raabe, and J. Neugebauer, Acta Mater. 70, 92 (2014).

    Article  Google Scholar 

  19. C. Shaw and H. Jones, Mater. Sci. Eng. A 228, 856 (1997).

    Article  Google Scholar 

  20. Y. Guyot, I. Papantoniou, Y.C. Chai, S. Van Bael, J. Schrooten, and L. Geris, Biomech. Model. Mechanobiol. 13, 1361 (2014).

    Article  Google Scholar 

  21. C.S. Roberts, Magnesium and Its Alloys (New York: Wiley, 1960).

    Google Scholar 

  22. L.F. Hu, Q.F. Gu, Q. Li, J.Y. Zhang, and G.X. Wu, J. Alloys Compd. 741, 1222 (2018).

    Article  Google Scholar 

  23. F.U. Enikeev and A.A. Kruglov, Int. J. Mech. Sci. 37, 473 (1995).

    Article  Google Scholar 

  24. D. Sorgente, G. Palumbo, and L. Tricarico, Key Eng. Mater. 344, 119 (2007).

    Article  Google Scholar 

  25. G. Palumbo, D. Sorgente, L. Tricarico, S.H. Zhang, W.T. Zheng, L.X. Zhou, and L.M. Ren, Mater. Sci. Forum 551–552, 317 (2007).

    Article  Google Scholar 

  26. L.W.F. Mackenzie and M.O. Pekguleryuz, Scr. Mater. 59, 665 (2008).

    Article  Google Scholar 

  27. A. El-Morsy, K. Manabe, and H. Nishimura, Mater. Trans. 43, 2443 (2002).

    Article  Google Scholar 

  28. A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1339 (1969).

    Article  Google Scholar 

  29. Y. Chino, M. Kado, and M. Mabuchi, Acta Mater. 56, 387 (2008).

    Article  Google Scholar 

  30. C.H. Cáceres and A. Blake, Phys. Status Solidi Appl. Res. 194, 147 (2002).

    Article  Google Scholar 

  31. C.H. Cáceres and A.H. Blake, Mater. Sci. Forum 567–568, 45 (2008).

    Google Scholar 

  32. N. Stanford and M.R. Barnett, Magnesium Technology, 2012, eds. S.N. Mathaudhu, W.H. Sillekens, N.R. Neelameggham, and N. Hort (Cham: Springer, 2016), pp. 207–211.

    Google Scholar 

  33. A.H. Blake and C.H. Caceres, Mater. Sci. Eng. A 484, 161 (2008).

    Article  Google Scholar 

  34. J.F. Nie, Y.M. Zhu, J.Z. Liu, and X.Y. Fang, Science 340, 957 (2013).

    Article  Google Scholar 

  35. S.L. Shang, W.Y. Wang, B.C. Zhou, Y. Wang, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, and Z.K. Liu, Acta Mater. 67, 168 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work provided by TUBITAK and CNR-Italy under the Project Number 213M535. We also acknowledge the support provided by the Turkish Ministry of Science, Industry and Technology under the SANTEZ Project 0286.STZ.2013-2. Some of the experimental activities related to this work were able to be carried out thanks to the facilities of the TRASFORMA network, funded by Regione Puglia, Italy, and ILTEM of Dumlupinar University, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Guglielmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guglielmi, P., Kaya, A.A., Türe, Y. et al. Deformation Capacity of a Ternary Magnesium Alloy in a Gas-Forming Process at Elevated Temperatures. JOM 71, 2087–2096 (2019). https://doi.org/10.1007/s11837-019-03403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03403-0

Navigation