Skip to main content
Log in

New Studies in the Field of Alloying and Deformation of Modern Magnesium Alloys. Review

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Foreign works containing the results of new studies in the field of alloying and deformation of modern magnesium alloys are reviewed. Attention is shown to be paid to studying the effect of increasing the properties of the alloys containing various rare earth metals (REM), including alloys with a low REM content. Attention is also paid to LPSO-phase-containing alloys. In such alloys, a specific mechanism of deformation kink bands in LPSO phases during deformation is operative, and it promotes an increase in the strength properties of a deformed semifinished product. The processes accompanied by superplastic deformation (SPD) are being actively studied. Many studies are aimed at developing new complex schemes of preliminary deformation to facilitate SPD. The application of a unique scheme of preliminary deformation of a serial ZK60 alloy was shown to give rise to a very high strain-rate sensitivity (m = 0.57–0.62). Magnesium wrought alloys are still in the focus of research as a modern significant structural material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. N. Kablov, “Innovative solutions of FGUP VIAM GNTs RF for ‘Strategic Directions of Designing Materials and Technologies of Their Processing until 2030,’” Aviats. Mater. Tekhnol., No. 1 (34), 3–33 (2015). https://doi.org/10.18577/2071-9140-2015-0-1-3-33

  2. E. N. Kablov, “Next-generation materials—basis of innovations, technological leadership, and national safety of Russia,” Intellekt Tekhnol., No. 2(14), 16–21 (2016).

  3. E. N. Kablov, E. F. Volkova, and E. V. Filonova, “Effect of REE on the phase composition and properties of a new refractory magnesium alloy of the Mg–Zn–Zr–REE system,” Metal Sci. Heat Treat., 1–7 (2017).

  4. E. N. Kablov, M. V. Akinina, E. F. Volkova, I. V. Mostyaev, and A. V. Leonov, “Phase composition and fine structure of an ML9 cast magnesium alloy in the as-cast and heat-treated states,” Aviats. Mater. Tekhnol., No. 2, 17–22 (2020). https://doi.org/10.18577/2071-9140-2020-0-2-17-24

  5. H. Somekawa, D. Ando, K. Hagihara, M. Yamasaki, and Y. Kawamura, “Intrinsic kink bands strengthening induced by several wrought-processes in Mg–Y–Zn alloys, containing LPSO phase,” Mater. Charact. 179, 111348 (2021).

    Article  CAS  Google Scholar 

  6. A. Nikolas and S. Ryl’nik, “Application of magnesium components in the aerospace industry,” Aerokosm. Kur’er, No. 1, 42–44 (2011).

    Google Scholar 

  7. V. V. Sadkov, Yu. L. Laponov, A. P. Ageev, et al., “Prospects and conditions for the use of magnesium alloys in OAO Tupolev aircrafts,” Metallurg. Mashinostr., No. 4, 19–23 (2007).

  8. http//www.magnesium-elektron.com. Luxfer MEL Technology website.

  9. Jiangfeng Song, Jia She, Daolun Chen, and Fusheng Pan, “Latest research advances on magnesium and magnesium alloys worldwide,” J. Magnes. Alloys 8, 1–41 (2020).

    Article  CAS  Google Scholar 

  10. G. W. Zhao, J. F. Fan, H. Zhang, Q. Zhang, J. Yang, H. B. Dong, and B. S. Xu, “Exceptional mechanical properties of ultrafine grain AZ31 alloy by the combined processing of ECAP, rolling and EPT,” Mater. Sci. Eng. A 731, 54–60 (2018).

    Article  CAS  Google Scholar 

  11. H. J. Guo, X. Zeng, J. F. Fan, H. Zhang, Q. Zhang, W. G. Li, H. B. Dong, and B. S. Xu, “Effect of electropulsing treatment on static recrystallization behavior cold-rolled magnesium alloy ZK60with different reductions,” J. Mater. Sci. Technol. 35, 1113–1120 (2019).

    Article  Google Scholar 

  12. Y. Xu, S. Wang, Y. Wang, L. Chen, L. Yang, L. Xiao, L. Yang, and N. Hort, “Mechanical behaviors of extruded Mg alloys with high Gd and Nd content. Progress in natural science,” Mater. Intern. https://doi.org/10.1016/j.pnsc.2021.06.005

  13. S. Gorsse, S. R. Hutchinson, B. Chevalier, and J. F. Nie, “Control of the mechanical asymmetry in an extruded MN11 alloy by static annealing,” J. Alloys Compd. 392 (1, 2), 253–262 (2005).

  14. Q. Peng, Y. Wu, D. Fang, J. Meng, and L. Wang, “Microstructure and properties of Mg–7Gd alloy containing,” J. Mater. Sci. 42 (11), 3908–3913 (2007).

    Article  CAS  Google Scholar 

  15. K. Y. Zheng, J. Dong, H. Q. Zeng, and W. J. Ding, “Effect of precipitation aging on the fracture behavior of Mg–11Gd–2Nd–0.4Zr cast alloy,” Mater. Sci. Eng. 489 (1, 2), 44–54 (2008).

  16. Y. Negishi, T. Nishimura, S. Iwasawa, S. Kamado, Y. Kojima, and R. Ninomiya, “Aging and tensile properties of Mg–Gd–Nd–Zr and Mg–Dy–Nd–Zr alloys,” J. Jap. Inst. Light Metals 44 (10), 555–561 (1994).

    Article  CAS  Google Scholar 

  17. E. F. Volkova, L. L. Rokhlin, S. Ya. Betsofen, and M. V. Akinina, “Effect of the yttrium and cerium subgroup REEs on the properties of magnesium alloys,” Tekhnol. Legkikh Splavov, No. 2, 42–48 (2014).

    Google Scholar 

  18. L. L. Rokhlin, “Structure and properties of Mg–REM alloys,” Metalloved. Term. Obrab. Met., No. 11, 18–22 (2006).

  19. E. F. Volkova, I. V. Mostyaev, and M. V. Akinina, “Comparative analysis of the anisotropy of mechanical properties and microstructure of deformed semifinished products from high-strength magnesium alloys with REE,” Trudy VIAM, No. 5 (65), St. 04 (2018). http://www.viam-works.ru. Cited August 10, 2021. https://doi.org/10.18577/2307-6046-2018-0-5-24-33

  20. E. F. Volkova, I. V. Mostyaev, and M. V. Akinina, “Ways to improve the basic mechanical characteristics of wrought magnesium alloys,” Trudy VIAM, No. 10 (58), St. 02 (2017). http://www.viam-works.ru. Cited August 17, 2021. https://doi.org/10.18577/2307-6046-2017-0-10-2-2

  21. E. F. Volkova, L. L. Rokhlin, and B. V. Ovsyannikov, Modern Wrought Magnesium Alloys: State of the Art and Prospects of Application in High-Tech Industries: Textbook, Ed. by E. N. Kablov (VIAM, Moscow, 2021).

    Google Scholar 

  22. J. J. Gao, J. Fu, N. Zhang, and Yu. A. Chen, “Structural features and mechanical properties of Mg–Y–Zn–Sn alloys with varied LPSO phases,” J. Alloys. Compd. 768, 1029–1038 (2018).

    Article  CAS  Google Scholar 

  23. K. Hagihara, Z. Li, M. Yamasaki, Y. Kawamura, and T. Nakano, “Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys,” Acta Mater. 163, 226–239 (2019).

    Article  CAS  Google Scholar 

  24. X. J. Zhou, Y. Yao, J. Zhang, Z. Z. Liu, K. Xu, H. Liu, and Z. J. Wu, “Improved workability for Mg–Y–Zn alloys via increased volume fraction of block LPSO phases,” Mater. Sci. Eng. A 794, 139934 (2020).

    Article  CAS  Google Scholar 

  25. K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H. Y. Yasuda, and Y. Umakoshi, “Plastic deformation behavior of Mg89Zn4Y7 extruded alloy composted of long-period stacking ordered phase,” Intermetallic. 18, 1079–1085 (2010).

    Article  CAS  Google Scholar 

  26. W. Liu, Z. R. Zeng, H. Hou, J. S. Zhang, and Y. M. Zhu, “Dynamic precipitation behavior and mechanical properties of hot-extruded Mg89Y4Zn2Li5 alloys with different extrusion ratio and speed,” Mater. Sci. Eng. A 798, 140121 (2020).

    Article  CAS  Google Scholar 

  27. J. K. Kim, S. Sandlobes, and D. Rabbe, “On the room temperature deformation mechanisms of a Mg–Y–Zn alloy with long-period-stacking ordered structure,” Acta Mater. 82, 414–423 (2015).

    Article  CAS  Google Scholar 

  28. K. Hagihara, Z. Li, M. Yamasaki, Y. Kawamura, and T. Nakano, “Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys,” Acta Mater. 163, 226–239 (2019).

    Article  CAS  Google Scholar 

  29. T. Zhao, Y. Hu, C. Zhang, et al., “Influence of extrusion conditions on microstructure and mechanical properties of Mg–2Gd–0.3Zr magnesium alloy,” J. Magnes. Alloys. https://doi.org/10.1016/j.jma.2020.06.019

  30. E. F. Volkova, A. A. Leonov, I. V. Mostyaev, and M. V. Akinina, “Effect of zirconium on the formation of the structure, phase composition, and properties of Mg–Zn–Zr–REM alloys,” Russ. Metall. (Metally), No. 11, 1243–1250 (2020).

  31. A. A. Presnyakov and R. K. Aubakirova, in Superplasticity of Metallic Materials (Nauka, Alma-Ata, 1982), pp. 5–32.

    Google Scholar 

  32. A. Galiyev and R. Kaibyshev, “Superplasticity in a magnesium alloy subjected to isothermal rolling,” Scripta Mater. 51 (2), 89–93 (2004).

    Article  CAS  Google Scholar 

  33. E. F. Volkova, “Effect of zirconium on the manifestation of the superplasticity effect in low-alloy magnesium alloys,” Tekhnol. Legkikh Splavov, No. 3, 107–112 (2007).

    Google Scholar 

  34. E. F. Volkova, “Manifestation of the superplasticity effect in wrought magnesium alloys with REE,” Metalloved. Term. Obrab. Met., No. 12, 30–34 (2014).

  35. E. F. Volkova, I. V. Moiseev, and M. V. Akinina, “Development of the superplasticity effect in serial alloys Mg–Al–Zn–Mn and Mg–Zn–Zr,” Tekhnol. Legkikh Splavov, No. 4, 52–57 (2014).

    Google Scholar 

  36. E. F. Volkova, I. V. Moiseev, and M. V. Akinina, “Comparative studies of the influence of phase composition on the mechanical and technological properties of magnesium alloys MA20-SP and MA2-1,” Trudy VIAM, No. 1 (61), St. 05 (2018). http://www.viam-works.ru. Cited September 1, 2021. https://doi.org/10.18577/2307-6046-2018-0-1-5-5

  37. H. Watanabe, T. Mukai, K. Ishikawa, and K. Higashi, “Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion,” Scr. Mater. 46, 851–856 (2002).

    Article  CAS  Google Scholar 

  38. R. B. Figueiredo and T. G. Langdon, “Factors influencing superplastic behavior in a magnesium ZK60 alloy processed by equal-channel angular pressing,” Mater. Sci. Eng. 503, 141–144 (2009).

    Article  Google Scholar 

  39. S. A. Torbati-Sarraf, R. Alizadeh, R. Mahmudi, and T. G. Langdon, “Evaluating the flow properties of a magnesium ZK60 alloy processed by high-pressure torsion: a comparison of two different miniature testing techniques,” Mater. Sci. Eng. 708, 432–439 (2017).

    Article  CAS  Google Scholar 

  40. N. Azizi and R. Mahmudi, “Superplasticity of fine-grained MgGd alloys processed by multi-directional forging,” Mater. Sci. Eng. 767, 138436 (2019).

    Article  CAS  Google Scholar 

  41. M. Sabbaghian and R. Mahmudi, “Superplasticity of the fine-grained friction stir processed Mg–3Gd–1Zn sheets,” Mater. Char. 172, 110902 (2021).

    Article  CAS  Google Scholar 

  42. M. M. Hoseini-Athar, R. Mahmudi, R. Prasath Babu, and P. Hedstrom, “Microstructural evolution and superplastic behavior of a fine-grained Mg–Gd alloy processed by constrained groove pressing,” Mater. Sci. Eng. 754, 390–399 (2019).

    Article  CAS  Google Scholar 

  43. A. Mohan, W. Yuan, and R. S. Mishra, “High strain rate superplasticity in friction stir processed ultrafine grained Mg–Al–Zn alloys,” Mater. Sci. Eng. 562, 69–76 (2013).

    Article  CAS  Google Scholar 

  44. N. Fakhar, M. Sabbaghian, P. Nagy, K. Fekete, and J. Gubicza, “Superior low-temperature superplasticity in fine-grained ZK60 Mg alloy sheet produced by a combination of repeated upsetting process and sheet extrusion,” Mater. Sci. Eng. A 819, 141444 (2021).

    Article  CAS  Google Scholar 

  45. N. Fakhar and M. Sabbaghian, “A good combination of ductility, strength, and corrosion resistance of fine-grained ZK60 magnesium alloy produced by repeated upsetting process for biodegradable applications,” J. Alloys Compd. 862, 158334 (2021).

    Article  CAS  Google Scholar 

  46. D. Zhang, S. Wang, C. Qiu, and W. Zhang, “Superplastic tensile behavior of a fine-grained AZ91 magnesium alloy prepared by friction stir processing,” Mater. Sci. Eng. 556, 100–106 (2012).

    Article  CAS  Google Scholar 

  47. Q. Yang, B. L. Xiao, Q. Zhang, M. Y. Zheng, and Z. Y. Ma, “Exceptional high-strain-rate superplasticity in Mg–Gd–Y–Zn–Zr alloy with long-period stacking ordered phase,” Scr. Mater. 69, 801–804 (2013).

    Article  CAS  Google Scholar 

  48. Md F. Khan and S. K. Panigrahi, “Achieving excellent superplasticity in an ultrafine-grained QE22 alloy at both high strain rate and low-temperature regimes,” J. Alloys Compd. 747, 71–82 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Volkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, E.F., Akinina, M.V., Mostyaev, I.V. et al. New Studies in the Field of Alloying and Deformation of Modern Magnesium Alloys. Review. Russ. Metall. 2022, 191–199 (2022). https://doi.org/10.1134/S0036029522030120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522030120

Keywords:

Navigation