Skip to main content
Log in

Effects of Mold Current on Slag Skin and Heat Flow Distribution During Electroslag Remelting at Given Power Input

  • CFD Modeling and Simulation in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A transient model including the electromagnetic field, fluid flow, and heat transfer has been developed based on the volume-of-fluid model and dynamic mesh technique. At given power input, two cases were simulated to investigate the effects of the mold current on the slag skin and heat flow distribution. The calculated melt rate and slag skin thickness were compared with measurements to validate the model. At given power input, with the mold current, the slag–metal pool interface shows a higher temperature, resulting in a thinner slag skin of 1.2 mm. Due to the more uniform slag temperature, the heat flow to the slag/mold interface reaches 34.7%, resulting in a low melt rate of 75 kg/h. In a laboratory-scale electroslag remelting unit, the heat transferred to the metal pool by convection approached 28% of the power input, independent of whether the mold current is considered or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\( \vec{H} \) :

Magnetic field intensity (A/m)

\( H_{\theta } \) :

Magnetic field intensity in azimuthal direction (A/m)

\( \hat{H}_{\theta } \) :

Complex amplitude of magnetic field intensity in azimuthal direction (A/m)

r :

Radial coordinate

z :

Axial coordinate

t :

Time (s)

\( \vec{J} \) :

Current density vector (A/m2)

\( \vec{V} \) :

Velocity (m/s)

I :

Current (A)

j :

Imaginary unit

P :

Pressure (Pa)

\( f_{\text{l}} \) :

Liquid fraction

A mush :

Mushy zone constant (Pa s/m2)

d 1 :

Primary dendritic arm space (m)

\( \vec{V}_{\text{cast}} \) :

Cast velocity (m/s)

\( \vec{g} \) :

Gravity acceleration (m2/s)

P t :

Transient power input (kW)

P 0 :

Target power input (kW)

\( Q_{\text{Joule}} \) :

Joule heating (W/m3)

\( \vec{F}_{\text{e}} \) :

Lorentz force (N/m3)

\( \vec{F}_{\text{d}} \) :

Drag force for blocking the flow in mushy zone (N/m3)

L :

Latent heat (J/kg)

\( k_{\text{eff}} \) :

Effective thermal conductivity (W/(mK))

\( k_{\text{m}} \) :

Thermal conductivity of electrode (W/(mK))

\( {\text{S}}_{\text{electrode}} \) :

Cross-sectional area of electrode tip (m2)

m :

Melt rate (kg/s)

\( H \) :

Enthalpy (J/kg)

\( h \) :

Sensible enthalpy (J/kg)

h ref :

Reference enthalpy at the reference temperature Tref

\( T_{\text{ref}} \) :

Reference temperature used for calculating sensible enthalpy (K)

T :

Temperature (K)

T 0 :

Reference temperature used for calculating buoyancy (K)

\( C_{\text{p}} \) :

Heat capacity (J/(kgK))

T l :

Liquidus temperature (K)

T s :

Solidus temperature (K)

\( \sigma \) :

Electric conductivity (\( \varOmega^{ - 1} \;{\text{m}}^{ - 1} \))

\( \mu_{0} \) :

Permeability of vacuum (T m/A)

\( \rho \) :

Density (kg/m3)

\( \rho_{0} \) :

Reference density (kg/m3)

\( \rho_{q} \) :

Density of phase q (kg/m3)

\( \mu \) :

Dynamic viscosity (Pa s)

\( \alpha_{q} \) :

Volume fraction of phase q

\( \varphi \) :

Property of mixture phase property

\( \omega \) :

AC frequency (Hz)

\( \beta \) :

Thermal expansion coefficient (1/K)

References

  1. B. Hernandezmorales and A. Mitchell, Ironmak. Steelmak. 26, 423 (1999).

    Article  Google Scholar 

  2. Y. Dong, Z. Jiang, J. Fan, Y. Cao, D. Hou, and H. Cao, Metall. Mater. Trans. B 47, 1475 (2016).

    Article  Google Scholar 

  3. Z. Jiang, J. Yu, F. Liu, X. Chen, and X. Geng, High Temp. Mater. Proc. 36, 411 (2017).

    Google Scholar 

  4. A. Mitchell, J. Vac. Sci. Technol 7, 63 (1970).

    Article  Google Scholar 

  5. A. Dilawari and J. Szekely, Metall. Mater. Trans. B 9, 77 (1978).

    Article  Google Scholar 

  6. M. Choudhary and J. Szekely, Metall. Mater. Trans. B 11, 439 (1980).

    Article  Google Scholar 

  7. X. Wang and Y. Li, Metall. Mater. Trans. B 46, 1837 (2015).

    Article  Google Scholar 

  8. K. Kelkar, S. Patankar, and A. Mitchell, in Proceeding International Symposium. Liquid metal Processing and Casting, Santa Fe (2005), p. 137.

  9. Q. Wang, F. Wang, B. Li, and F. Tsukihashi, ISIJ Int. 55, 1010 (2015).

    Article  Google Scholar 

  10. Q. Wang, W. Rong, and B. Li, JOM 67, 2705 (2015).

    Article  Google Scholar 

  11. J.M. Yanke, Ph.D. Thesis, Purdue University (2013).

  12. F. Liu, X. Zang, Z. Jiang, X. Geng, and M. Yao, Int. J. Miner. Metall. Mater. 19, 303 (2012).

    Article  Google Scholar 

  13. F. Liu, Z. Jiang, H. Li, X. Geng, X. Chen, H. Feng, and X. Zang, Ironmak. Steelmak. 41, 791 (2014).

    Article  Google Scholar 

  14. Y. Dong, Z. Hou, Z. Jiang, H. Cao, Q. Feng, and Y. Cao, Metall. Mater. Trans. B 49, 349 (2018).

    Article  Google Scholar 

  15. A. Kharicha, W. Schützenhöfer, A. Ludwig, R. Tanzer, and M. Wu, Steel Res. Int. 79, 632 (2008).

    Article  Google Scholar 

  16. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Rybéron, V. Schmitt, S. Hans, and H. Poisson, Mater. Trans. B 40, 271 (2009).

    Article  Google Scholar 

  17. J. Yanke and M.J. Krane, in Proceeding International Symposium Liquid Metal Processing and Casting, Austin (2013), p. 47.

  18. J. Yanke, K. Fezi, M. Fahrmann, and M. Krane, in Proceeding International Symposium Liquid Metal Processing and Casting, Austin (2013), p. 71.

  19. J. Yanke, K. Fezi, R.W. Trice, and M. Krane, Numer. Heat Trans. A Appl. 67, 268 (2015).

    Article  Google Scholar 

  20. M. Hugo, B. Dussoubs, A. Jardy, J. Escaffre, and H. Poisson, Metall. Mater. Trans. B 47, 2607 (2016).

    Article  Google Scholar 

  21. M. Hugo, B. Dussoubs, A. Jardy, J. Escaffre, and H. Poisson, in Proceeding International Symposium Liquid Metal Processing and Casting, Austin (2013), p. 79.

  22. E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, H. Holzgruber, B. Ofner, and M. Ramprecht, in Proceeding International Symposium Liquid Metal Processing and Casting, Austin (2013), p. 13.

  23. E. Karimi-Sibaki, A. Kharicha, J. Bohacek, M. Wu, and A. Ludwig, Adv. Eng. Mater. 18, 224 (2016).

    Article  Google Scholar 

  24. E. Karimi-Sibaki, A. Kharicha, J. Korp, M. Huai Wu, and A. Ludwig, Mater. Sci. Forum, 790, 396 (2014).

  25. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, and J. Bohacek, Steel Res. Int. (2018). https://doi.org/10.1002/srin.201700100.

    Google Scholar 

  26. E. Karimi-Sibaki, A. Kharicha, J. Bohacek, M. Wu, and A. Ludwig, Metall. Mater. Trans. B 46, 2049 (2015).

    Article  Google Scholar 

  27. A. Kharicha, A. Ludwig, and M. Wu, ISIJ Int. 57, 1621 (2014).

    Article  Google Scholar 

  28. A. Kharicha, M. Wu, A. Ludwig, and E. Karimi-Sibaki, Metall. Mater. Trans. B 47, 1427 (2016).

    Article  Google Scholar 

  29. J. Yu, Z. Jiang, F. Liu, K. Chen, H. Li, and X. Geng, ISIJ Int. 57, 1213 (2017).

    Article  Google Scholar 

  30. Q. Wang, Z. He, B. Li, and F. Tsukihashi, Metall. Mater. Trans. B 45, 2425 (2014).

    Article  Google Scholar 

  31. J. Yu, F. Liu, Z. Jiang, C. Kang, K. Chen, H. Li, and X. Geng, Steel Res. Int. (2018). https://doi.org/10.1002/srin.201700481.

    Google Scholar 

  32. A.D. Patel and K.M. Kelkar, in Modeling of Casting Welding and Advanced Solidification Processes XII (2009).

  33. A. Mitchell, Mater. Sci. Eng. A 413, 10 (2005).

    Article  Google Scholar 

  34. Z. Jiang, Physical Chemistry and Transport Phenomena during Electroslag Metallurgy, 1st ed. (Shenyang: Northeastern University Press, 2000), pp. 229–232.

    Google Scholar 

Download references

Acknowledgements

This project was supported by the National Nature Science Foundation of China (Grant Nos. 51434004, U1435205, and 51674070), the Fundamental Research Funds for the Central Universities (Grant No. N162504006), and the Transformation Project of Major Scientific and Technological Achievements in Shenyang (Grant No. Z17-5-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabing Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Liu, F., Li, H. et al. Effects of Mold Current on Slag Skin and Heat Flow Distribution During Electroslag Remelting at Given Power Input. JOM 71, 744–753 (2019). https://doi.org/10.1007/s11837-018-3276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3276-3

Navigation