Skip to main content
Log in

Co-reduction of Copper Smelting Slag and Nickel Laterite to Prepare Fe-Ni-Cu Alloy for Weathering Steel

  • Toward Resources and Processes Sustainability: Part I
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, a new technique was proposed for the economical and environmentally friendly recovery of valuable metals from copper smelting slag while simultaneously upgrading nickel laterite through a co-reduction followed by wet magnetic separation process. Copper slag with a high FeO content can decrease the liquidus temperature of the SiO2-Al2O3-CaO-MgO system and facilitate formation of liquid phase in a co-reduction process with nickel laterite, which is beneficial for metallic particle growth. As a result, the recovery of Ni, Cu, and Fe was notably increased. A crude Fe-Ni-Cu alloy with 2.5% Ni, 1.1% Cu, and 87.9% Fe was produced, which can replace part of scrap steel, electrolytic copper, and nickel as the burden in the production of weathering steel by an electric arc furnace. The study further found that an appropriate proportion of copper slag and nickel laterite in the mixture is essential to enhance the reduction, acquire appropriate amounts of the liquid phase, and improve the growth of the metallic alloy grains. As a result, the liberation of alloy particles in the grinding process was effectively promoted and the metal recovery was increased significantly in the subsequent magnetic separation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Morcillo, I. Díaz, B. Chico, H. Cano, and D. de la Fuente, Corros. Sci. 83, 6 (2014).

    Article  Google Scholar 

  2. M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. De la Fuente, Corros. Sci. 77, 6 (2013).

    Article  Google Scholar 

  3. M. Sánchez and M. Sudbury, J. Min. Metall. B 49, 161 (2013).

    Article  Google Scholar 

  4. B. Gorai, R.K. Jana, and Premchand, Resour. Conserv. Recy. 39, 299 (2003).

    Article  Google Scholar 

  5. I. Muravyov, V. Fomchenko, V. Usoltsev, A. Vasilyev, and F. Kondrateva, Hydrometallurgy 119, 40 (2012).

    Article  Google Scholar 

  6. S. Panda, S. Mishra, D.S. Rao, N. Pradhan, U. Mohapatra, S. Angadi, and B.K. Mishra, Korean J. Chem. Eng. 32, 667 (2015).

    Article  Google Scholar 

  7. K. Mawejaa, T. Mukongob, and I. Mutomboc, J. Hazard. Mater. 164, 856 (2009).

    Article  Google Scholar 

  8. A. Sarrafi, B. Rahmati, and H.R. Hassani, Miner. Eng. 17, 457 (2004).

    Article  Google Scholar 

  9. Z.Q. Guo, D.Q. Zhu, J. Pan, and T.J. Wu, Metals 86, 6 (2016).

    Google Scholar 

  10. Z.Q. Guo, D.Q. Zhu, J. Pan, and F. Zhang, JOM 69, 2341 (2016).

    Article  Google Scholar 

  11. X.L. Zhou, D.Q. Zhu, J. Pan, and T.J. Wu, Int. ISIJ 55, 1347 (2015).

    Article  Google Scholar 

  12. B. Su Kim, S. Ki Jo, D. Shin, J.C. Lee, and S.B. Jeong, Int. J. Miner. Process. 43, 143 (2015).

    Google Scholar 

  13. R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 15, 593 (2002).

    Article  Google Scholar 

  14. M. Jiang, T. Sun, Z. Liu, J.Liu. Kou, and N.S. Zhang, Int. J. Miner. Process. 32, 123 (2013).

    Google Scholar 

  15. M.J. Rao, G.H. Li, X. Zhang, J. Luo, Z.W. Peng, and T. Jiang, Separa. Sci. Technol. 51, 1727 (2016).

    Article  Google Scholar 

  16. D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan, and G.L. Zheng, Int. J. Miner. Process. 1, 106 (2012).

    Google Scholar 

  17. G.H. Li, T.M. Shi, M.J. Rao, T. Kiang, and Y.B. Zhang, Miner. Eng. 19, 32 (2012).

    Google Scholar 

  18. R.M. German, P. Suri, and S.J. Park, J. Mater. Sci. 39, 44 (2009).

    Google Scholar 

  19. H. Tsuji, ISIJ Int. 52, 1000 (2012).

    Article  Google Scholar 

  20. Y. Kobayashi, H. Todoroki, and H. Tsuji, ISIJ Int. 35, 51 (2011).

    Google Scholar 

  21. J. Luo, G.H. Li, Z.W. Peng, M.J. Rao, Y.B. Zhang, and T. Jiang, JOM 68, 3015 (2016).

    Article  Google Scholar 

  22. GB/T 219-2008, Determination of Fusibility of Coal Ash (National Standards of the People’s Republic of China, 2008); (in Chinese)

Download references

Acknowledgements

The authors wish to express their thanks to the National Key Technology R&D Program of China (No. 2013BAB03B04) for the financial support of this research and would like to thank the Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources of Hunan Province, which supplied us the facilities and funds to complete the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqi Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 880 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Pan, J., Zhu, D. et al. Co-reduction of Copper Smelting Slag and Nickel Laterite to Prepare Fe-Ni-Cu Alloy for Weathering Steel. JOM 70, 150–154 (2018). https://doi.org/10.1007/s11837-017-2641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2641-y

Navigation