Skip to main content
Log in

Phase Evolution and Ni-Fe Granular Growth of Saprolitic Laterite Ore–CaO Mixtures during Reductive Roasting

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The correlations between phase evolution, fusion behavior, and Ni-Fe granules growth of laterite ore–CaO mixtures during reductive roasting have been investigated. The minimum melting point of 1220°C of the CaO-MgO-Al2O3-SiO2 system with 17–36 wt.% CaO is demonstrated via phase diagram analysis, and this point is decreased in the presence of FeO. This reveals that the fusion behavior in close association with the Fe-Ni granular growth can be regulated by altering the contents of CaO and FeO. Promoting the generation of diopside (CaMgSi2O6) may reduce the operating temperature from 1300–1350°C to 1150–1200°C, which ensures sufficient melting phase content. Moreover, reducing the CO partial fraction lowers the fusion temperature but hinders the growth of Ni-Fe grains. The average size of Ni-Fe granules in the reduced mixture with 17 wt.% CaO reaches nearly 20 μm at 1200°C for 1 h in a 100 vol.% CO atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. U.S.G.S., Mineral commodity summaries 2016. doi:10.3133/70140094.

  2. M. Rao, G. Li, T. Jiang, J. Luo, Y. Zhang, and X. Fan, JOM 65, 1573 (2013).

    Article  Google Scholar 

  3. R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 15, 593 (2002).

    Article  Google Scholar 

  4. Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60, 30 (2015).

    Article  Google Scholar 

  5. G. Li, T. Shi, M. Rao, T. Jiang, and Y. Zhang, Miner. Eng. 32, 19 (2012).

    Article  Google Scholar 

  6. A. Bunjaku, M. Kekkonen, K.K. Pietilä, and P. Taskinen, Trans. Inst. Min. Metall. C 121, 155 (2012).

    Google Scholar 

  7. B. Li, H. Wang, and Y. Wei, Miner. Eng. 24, 1556 (2011).

    Article  Google Scholar 

  8. T. Watanabe, S. Ono, H. Arai, and T. Matsumori, Int. J. Miner. Process. 19, 173 (1987).

    Article  Google Scholar 

  9. S. Yamasaki, M. Noda, and N. Tachino, J. MMIJ 123, 689 (2007).

    Article  Google Scholar 

  10. T. Matsumori, J. MMIJ 115, 448 (1999).

    Article  Google Scholar 

  11. G. Tao, F. Xiao, and W. Jiang, Nonferr. Metal. (Ext. Met.) 8, 51 (2014).

    Google Scholar 

  12. H. Tsuji, ISIJ Int. 52, 1000 (2012).

    Article  Google Scholar 

  13. Y. Kobayashi, H. Todoroki, and H. Tsuji, ISIJ Int. 51, 35 (2011).

    Article  Google Scholar 

  14. H. Tsuji, ISIJ Int. 52, 333 (2012).

    Article  Google Scholar 

  15. H. Tsuji and N. Tachino, ISIJ Int. 52, 1951 (2012).

    Article  Google Scholar 

  16. H. Tsuji and N. Tachino, ISIJ Int. 52, 1724 (2012).

    Article  Google Scholar 

  17. M. Valix and W.H. Cheung, Miner. Eng. 15, 607 (2002).

    Article  Google Scholar 

  18. M.A. Rhamdhani, P.C. Hayes, and E. Jak, Trans. Inst. Min. Metall. C 118, 146 (2009).

    Google Scholar 

  19. I. Halikia, K. Skartados, and P. Neou-Syngouna, Trans. Inst. Min. Metall. C 111, 135 (2002).

    Google Scholar 

  20. E.N. Zevgolis, C. Zografidis, T. Perraki, and E. Devlin, J. Therm. Anal. Calorim. 100, 133 (2010).

    Article  Google Scholar 

  21. M. Rao, G. Li, X. Zhang, J. Luo, Z. Peng, and T. Jiang, Sep. Sci. Technol. 51, 1408 (2016).

    Article  Google Scholar 

  22. M. Rao, G. Li, X. Zhang, J. Luo, Z. Peng, and T. Jiang, Sep. Sci. Technol. 51, 1727 (2016).

    Article  Google Scholar 

  23. G. Li, J. Luo, Z. Peng, Y. Zhang, M. Rao, and T. Jiang, ISIJ Int. 55, 1828 (2015).

    Article  Google Scholar 

  24. J. Luo, G. Li, M. Rao, Y. Zhang, Z. Peng, Q. Zhi, and T. Jiang, JOM 67, 1966 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the National Natural Science Foundation of China (Nos. 51234008 and 51174230), the Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources and the Open-End Fund for the Valuable and Precision Instruments of Central South University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Li, G., Peng, Z. et al. Phase Evolution and Ni-Fe Granular Growth of Saprolitic Laterite Ore–CaO Mixtures during Reductive Roasting. JOM 68, 3015–3021 (2016). https://doi.org/10.1007/s11837-016-2118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2118-4

Keywords

Navigation