Skip to main content
Log in

On the Measurement of Power Law Creep Parameters from Instrumented Indentation

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.G. Atkins and D. Tabor, J. Mech. Phys. Solids 13, 149 (1965).

    Article  Google Scholar 

  2. S. Jayaraman, G.T. Hahn, W.C. Oliver, C.A. Rubin, and P.C. Bastias, Int. J. Solids Struct. 35, 365 (1998).

    Article  Google Scholar 

  3. A.E. Giannakopoulos and S. Suresh, Scripta Mater. 40, 1191 (1999).

    Article  Google Scholar 

  4. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh, Acta Mater. 49, 3899 (2001).

    Article  Google Scholar 

  5. M. Sakai, T. Akatsu, S. Numata, and K. Matsuda, J. Mater. Res. 18, 2087 (2003).

    Article  Google Scholar 

  6. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler, Acta Mater. 51, 1663 (2003).

    Article  Google Scholar 

  7. S. Shim, J.-I. Jang, and G.M. Pharr, Acta Mater. 56, 3824 (2008).

    Article  Google Scholar 

  8. L. Zhang, F. Yang, L. Sun, and Y.-H. Guo, Chin. Rare Earths 38, 126 (2017).

    Google Scholar 

  9. J. Wu, S.-B. Xue, J.-W. Wang, S. Liu, Y.-L. Han, and L.-J. Wang, J. Mater. Sci. Mater. Electron. 27, 12729 (2016).

    Article  Google Scholar 

  10. J. Zhu, H. Xie, and Z. Liu, Chin. J. Theor. Appl. Mech. 45, 45 (2013).

    Google Scholar 

  11. J.M. Wheeler, D.E.J. Armstrong, W. Heinz, and R. Schwaiger, Curr. Opin. Solid State Mater. Sci. 19, 354 (2015).

    Article  Google Scholar 

  12. P.S. Phani and W.C. Oliver, Acta Mater. 111, 31 (2016).

    Article  Google Scholar 

  13. I.-C. Choi, B.-G. Yoo, Y.-J. Kim, and J. Jang, J. Mater. Res. 27, 3 (2012).

    Article  Google Scholar 

  14. A.J. Harris, B.D. Beake, D.E.J. Armstrong, and M.I. Davies, Exp. Mech. 1 (2016)

  15. J.C.M. Li, Mater. Sci. Eng. A 322, 23 (2002).

    Article  Google Scholar 

  16. T.H. Hyde, K.A. Yehia, and A.A. Becker, Int. J. Mech. Sci. 35, 451 (1993).

    Article  Google Scholar 

  17. O.D. Sherby and P.E. Armstrong, Metall. Trans. B 2, 3479 (1971).

    Article  Google Scholar 

  18. P.M. Sargent and M.F. Ashby, Mater. Sci. Technol. 8, 594 (1992).

    Article  Google Scholar 

  19. S. Sakai, Y. Watanabe, S. Izumi, A. Iwasaki, and T. Ogawa, Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP, 7, 301 (2005)

    Google Scholar 

  20. U.P. Singh and H.D. Merchant, Metall. Trans. 4, 2621 (1973).

    Article  Google Scholar 

  21. M. Kim, K.P. Marimuthu, S. Jung, and H. Lee, Comput. Mater. Sci. 113, 211 (2016).

    Article  Google Scholar 

  22. D. Mulhearn and T.O. Tabor, J. Inst. Met. 89, 7 (1960).

    Google Scholar 

  23. B. Lucas (Ph.D. Dissertation, University of Tennessee, Knoxville, 1997)

  24. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken, J. Mater. Res. 26, 1421 (2011).

    Article  Google Scholar 

  25. M.J. Mayo and W.D. Nix, Acta Metall. 36, 2183 (1988).

    Article  Google Scholar 

  26. V. Raman and R. Berriche, J. Mater. Res. 7, 627 (1992).

    Article  Google Scholar 

  27. G.M. Pharr, E.G. Herbert, and Y. Gao, Annu. Rev. Mater. Res. 40, 271 (2010).

    Article  Google Scholar 

  28. P. Sudharshan Phani and W.C. Oliver, Mater. (Basel) 10, 663 (2017).

    Article  Google Scholar 

  29. C. Su, E.G. Herbert, S. Sohn, J.A. LaManna, W.C. Oliver, and G.M. Pharr, J. Mech. Phys. Solids 61, 517 (2013).

    Article  Google Scholar 

  30. L. Shen, W.C.D. Cheong, Y.L. Foo, and Z. Chen, Mater. Sci. Eng. A 532, 505 (2012).

    Article  Google Scholar 

  31. N.J. Martinez and Y.-L. Shen, J. Mater. Eng. Perform. 25, 1109 (2016).

    Article  Google Scholar 

  32. J. Dean, J. Campbell, G. Aldrich-Smith, and T.W. Clyne, Acta Mater. 80, 56 (2014).

    Article  Google Scholar 

  33. R. Goodall and T.W. Clyne, Acta Mater. 54, 5489 (2006).

    Article  Google Scholar 

  34. V. Maier, B. Merle, M. Göken, and K. Durst, J. Mater. Res. 28, 1177 (2013).

    Article  Google Scholar 

  35. A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna, Proc. R. Soc. London. Ser. A Math. Phys. Sci. 441, 97 (1993).

    Article  Google Scholar 

  36. H. Takagi, M. Dao, M. Fujiwara, and M. Otsuka, Philos. Mag. 83, 3959 (2003).

    Article  Google Scholar 

  37. H. Takagi, M. Dao, and M. Fujiwara, Mater. Trans. 55, 275 (2014).

    Article  Google Scholar 

  38. N.Q. Chinh and P. Szommer, Mater. Sci. Eng. A 611, 333 (2014).

    Article  Google Scholar 

  39. H. Takagi and M. Fujiwara, Mater. Sci. Eng. A 602, 98 (2014).

    Article  Google Scholar 

  40. S. Fujisawa, A. Yonezu, M. Noda, and B. Xu, J. Eng. Mater. Technol. 139, 21004 (2017).

    Article  Google Scholar 

  41. M.E. Cordova and Y.-L. Shen, J. Mater. Sci. 50, 1394 (2016).

    Article  Google Scholar 

  42. Y.-T. Cheng and C.-M. Cheng, Philos. Mag. Lett. 81, 9 (2001).

    Article  Google Scholar 

  43. V.M.F. Marques, B. Wunderle, C. Johnston, and P.S. Grant, Acta Mater. 61, 2471 (2013).

    Article  Google Scholar 

  44. A.A. Elmustafa, S. Kose, and D.S. Stone, J. Mater. Res. 22, 926 (2007).

    Article  Google Scholar 

  45. H. Oikawa, H. Sato, and K. Maruyama, Mater. Sci. Eng. 75, 21 (1985).

    Article  Google Scholar 

  46. Z. Tobolová and J. Čadek, Philos. Mag. 26, 1419 (1972).

    Article  Google Scholar 

  47. I.S. Servi and N.J. Grant, Trans. AIME 191, 909 (1951).

    Google Scholar 

  48. T. Altan and F.W. Boulger, J. Eng. Ind. 95, 1009 (1973).

    Article  Google Scholar 

  49. B.N. Lucas and W.C. Oliver, Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  50. O.D. Sherby, R.H. Klundt, and A.K. Miller, Metall. Trans. A 8, 843 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

WCO and GMP’s contributions to this work were supported in part by the National Science Foundation under Grant Number DMR-1427812.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sudharshan Phani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudharshan Phani, P., Oliver, W.C. & Pharr, G.M. On the Measurement of Power Law Creep Parameters from Instrumented Indentation. JOM 69, 2229–2236 (2017). https://doi.org/10.1007/s11837-017-2535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2535-z

Navigation