Skip to main content
Log in

Analysis of Indentation-Derived Power-Law Creep Response

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The use of instrumented indentation to characterize power-law creep is studied by computational modeling. Systematic finite element analyses were conducted to examine how indentation creep tests can be employed to retrieve the steady-state creep parameters pertaining to regular uniaxial loading. The constant indentation load hold and constant indentation-strain-rate methods were considered, first using tin (Sn)-based materials as a model system. The simulated indentation-strain rate-creep stress relations were compared against the uniaxial counterparts serving as model input. It was found that the constant indentation-strain-rate method can help establish steady-state creep, and leads to a more uniform behavior than the constant-load hold method. An expanded parametric analysis was then performed using the constant indentation-strain-rate method, taking into account a wide range of possible power-law creep parameters. The indentation technique was found to give rise to accurate stress exponents, and a certain trend for the ratio between indentation strain rate and uniaxial strain rate was identified. A contour-map representation of the findings serves as practical guidance for determining the uniaxial power-law creep response based on the indentation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.F. Ashby, Materials Selection in Mechanical Design, 4th ed., Butterworth-Heinemann, Oxford, 2011

    Google Scholar 

  2. M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, Cambridge, 2009

    Google Scholar 

  3. R.E. Smallman and A.H.W. Ngan, Modern Physical Metallurgy, 8th ed., Butterworth-Heinemann, Oxford, 2014

    Google Scholar 

  4. S.N.G. Chu and J.C.M. Li, Impression Creep; A New Creep Test, J. Mater. Sci., 1977, 12, p 2200–2208

    Article  Google Scholar 

  5. J.C.M. Li, Impression Creep and Other Localized Tests, Mater. Sci. Eng. A, 2002, 322, p 23–42

    Article  Google Scholar 

  6. F. Yang and J.C.M. Li, Impression Test—A Review, Mater. Sci. Eng. R, 2013, 74, p 233–253

    Article  Google Scholar 

  7. Y.J. Liu, B. Zhao, B.X. Xu, and Z.F. Yue, Experimental and Numerical Study of the Method to Determine the Creep Parameters from the Indentation Creep Testing, Mater. Sci. Eng. A, 2007, 456, p 103–108

    Article  Google Scholar 

  8. M.J. Mayo, R.W. Siegel, A. Narayanasamy, and W.D. Nix, Mechanical Properties of Nanophase TiO2 as Determined by Nanoindentation, J. Mater. Res., 1990, 5, p 1073–1082

    Article  Google Scholar 

  9. V. Raman and R. Berriche, An Investigation of the Creep Processes in Tin and Aluminum Using a Depth-Sensing Indentation Technique, J. Mater. Res., 1992, 7, p 627–638

    Article  Google Scholar 

  10. M. Fujiwara and M. Otsuka, Indentation Creep of β-Sn and Sn-Pb Eutectic Alloy, Mater. Sci. Eng. A, 2001, 319-321, p 929–933

    Article  Google Scholar 

  11. H. Takagi, M. Dao, M. Fujiwara, and M. Otsuka, Experimental and Computational Creep Characterization of Al-Mg Solid-Solution Alloy through Instrumented Indentation, Phil. Mag., 2003, 83, p 3959–3976

    Article  Google Scholar 

  12. C.Z. Liu and J. Chen, Nanoindentation of Lead-Free Solders in Microelectronic Packaging, Mater. Sci. Eng. A, 2007, 448, p 340–344

    Article  Google Scholar 

  13. C.L. Wang, Y.H. Lai, J.C. Huang, and T.G. Nieh, Creep of Nanocrystalline Nickel: A Direct Comparison between Uniaxial and Nanoindentation Creep, Scr. Mater., 2010, 62, p 175–178

    Article  Google Scholar 

  14. R. Goodall and T.W. Clyne, A Critical Appraisal of the Extraction of Creep Parameters from Nanoindentation Data Obtained at Room Temperature, Acta Mater., 2006, 54, p 5489–5499

    Article  Google Scholar 

  15. L. Shen, W.C.D. Cheong, Y.L. Foo, and Z. Chen, Nanoindentation Creep of Tin and Aluminium: A Comparative Study between Constant Load and Constant Strain Rate Methods, Mater. Sci. Eng. A, 2012, 532, p 505–510

    Article  Google Scholar 

  16. J. Dean, A. Bradbury, G. Aldrich-Smith, and T.W. Clyne, A Procedure for Extracting Primary and Secondary Creep Parameters from Nanoindentation Data, Mech. Mater., 2013, 65, p 124–134

    Article  Google Scholar 

  17. M. Tehrani, M. Safdari, and M.S. Al-Haik, Nanocharacterization of Creep Behavior of Multiwall Carbon Nanotubes/Epoxy Nanocomposite, Int. J. Plast., 2011, 27, p 887–901

    Article  Google Scholar 

  18. J.L. Hay and G.M. Pharr, Instrumented Indentation Testing, ASM Handbook Volume 8: Mechanical Testing and Evaluation, H. Kuhn and D. Medlin, Ed., ASM International, Materials Park, OH, 2000,

    Google Scholar 

  19. B.N. Lucas and W.C. Oliver, Indentation Power-Law Creep of High-Purity Indium, Metall. Mater. Trans. A, 1999, 30A, p 601–610

    Article  Google Scholar 

  20. Y.-T. Cheng and C.-M. Cheng, What is Indentation Hardness?, Surf. Coat. Technol., 2000, 133-134, p 417–424

    Article  Google Scholar 

  21. L. Shen, P. Lu, S. Wang, and Z. Chen, Creep Behaviour of Eutectic SnBi Alloy and its Constituent Phases using Nanoindentation Technique, J. Alloy. Compd., 2013, 574, p 98–103

    Article  Google Scholar 

  22. G. Xiao, G. Yuan, C. Jia, X. Yang, Z. Li, and X. Shu, Strain Rate Sensitivity of Sn-3.0Ag-0.5Cu Solder Investigated by Nanoindentation, Mater. Sci. Eng. A, 2014, 613, p 336–339

    Article  Google Scholar 

  23. C. Su, E.G. Herbert, S. Sohn, J.A. LaManna, W.C. Oliver, and G.M. Pharr, Measurement of Power-Law Creep Parameters by Instrumented Indentation Methods, J. Mech. Phys. Solids, 2013, 61, p 517–536

    Article  Google Scholar 

  24. W.H. Poisl, W.C. Oliver, and B.D. Fabes, The Relationship between Indentation and Uniaxial Creep in Amorphous Selenium, J. Mater. Res., 1995, 10, p 2024–2032

    Article  Google Scholar 

  25. H. Takagi, M. Dao, and M. Fujiwara, Prediction of the Constitutive Equation for Uniaxial Creep of a Power-Law Material through Instrumented Microindentation Testing and Modeling, Maters. Trans., 2014, 55, p 275–284

    Article  Google Scholar 

  26. M.E. Cordova and Y.-L. Shen, Indentation versus Uniaxial Power-Law Creep: A Numerical Assessment, J. Mater. Sci., 2015, 50, p 1394–1400

    Article  Google Scholar 

  27. A.C. Fischer-Cripps, Nanoindentation, Springer, New York, 2002

    Book  Google Scholar 

  28. D.R. Lide, Handbook of Chemistry and Physics, 76th ed., CRC Press, Boca Raton, 1995

    Google Scholar 

  29. G. Tang, Y.-L. Shen, D.R.P. Singh, and N. Chawla, Indentation Behavior of Metal-Ceramic Multilayers at the Nanoscale: Numerical Analysis and Experimental Verification, Acta Mater., 2010, 58, p 2033–2044

    Article  Google Scholar 

  30. N. J. Martinez, M.S. Thesis, University of New Mexico, 2015.

  31. D.S. Tabor, The Hardness of Metals, Clarendon Press, Oxford, 1951

    Google Scholar 

  32. K.L. Johnson, The Correlation of Indentation Experiments, J. Mech. Phys. Solids, 1970, 18, p 115–126

    Article  Google Scholar 

  33. S.S. Chiang, D.B. Marshall, and A.G. Evans, The Response of Solids to Elastic/Plastic Indentation. I. Stresses and Residual Stresses, J. Appl. Phys., 1982, 53, p 298–311

    Article  Google Scholar 

  34. A. Bolshakov and G.M. Pharr, Influences of Pileup on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques, J. Mater. Res., 1998, 13, p 1049–1058

    Article  Google Scholar 

  35. P. Hosemann, J.G. Swadener, D. Kiener, G.S. Was, S.A. Maloy, and N. Li, An Exploratory Study to Determine Applicability of Nano-Hardness and Micro-Compression Measurements for Yield Stress Estimation, J. Nucl. Mater., 2008, 375, p 135–143

    Article  Google Scholar 

  36. R.S. Sidhu, X. Deng, and N. Chawla, Microstructure Characterization and Creep Behavior of Pb-Free Sn-Rich Solder Alloys: Part II. Creep Behavior of Bulk Solder and Solder/Copper Joints, Metall. Mater. Trans. A, 2008, 39A, p 349–362

    Article  Google Scholar 

  37. N. Chawla, Thermomechanical Behaviour of Environmentally Benign Pb-Free Solders, Int. Mater. Rev., 2009, 54, p 368–384

    Article  Google Scholar 

  38. A.F. Bower, Applied Mechanics of Solids, CRC Press, Boca Raton, 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Lin Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, N.J., Shen, YL. Analysis of Indentation-Derived Power-Law Creep Response. J. of Materi Eng and Perform 25, 1109–1116 (2016). https://doi.org/10.1007/s11665-016-1934-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1934-6

Keywords

Navigation