Skip to main content
Log in

In Situ X-ray Microtomography of Stress Corrosion Cracking and Corrosion Fatigue in Aluminum Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Structural materials are subjected to combinations of stress and corrosive environments that work synergistically to cause premature failure. Therefore, studies on the combined effect of stress and corrosive environments on material behavior are required. Existing studies have been performed in two dimensions that are inadequate for full comprehension of the three-dimensional (3D) processes related to stress corrosion cracking (SCC) and corrosion-fatigue (CF) behavior. Recently, x-ray synchrotron tomography has evolved as an excellent technique to obtain the microstructure in 3D. Moreover, being nondestructive in nature, x-ray synchrotron tomography is well suited to study the evolution of microstructure with time (4D, or fourth dimension in time). This article presents our recent 4D studies on SCC and CF of Al 7075 alloys using x-ray synchrotron tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.R. Stock, Characterization of Materials (Wiley, 2012), pp. 1–18.

  2. J.J. Williams, N.C. Chapman, V. Jakkali, V.A. Tanna, N. Chawla, X. Xiao, and F. De Carlo, Metall. Mater. Trans. A 42A, 2999 (2011).

    Article  Google Scholar 

  3. S.R. Stock, Microcomputed Tomography: Methodology and Applications (Boca Raton: CRC Press, 2008).

    Book  Google Scholar 

  4. S.R. Stock, Int. Mater. Rev. 53, 129 (2008).

    Article  Google Scholar 

  5. J.C.E. Mertens, J.J. Williams, and N. Chawla, Mater. Charact. 92, 36 (2014).

    Article  Google Scholar 

  6. L. Salvo, M. Suery, A. Marmottant, N. Limodin, and D. Bernard, C. R. Phys. 11, 641 (2010).

    Article  Google Scholar 

  7. E. Maire, J.-Y. Buffiere, L. Salvo, J.J. Blandin, W. Ludwig, and J.M. Letang, Adv. Eng. Mater. 3, 539 (2001).

    Article  Google Scholar 

  8. J.C.E. Mertens, J.J. Williams, and N. Chawla, J. Electron. Mater. 43, 4442 (2014).

    Article  Google Scholar 

  9. J. Baruchel, J.-Y. Buffiere, E. Maire, P. Merle, and G. Peix, X-Ray Tomography in Material Science (Paris: HERMES Science Publications, 2000).

    Google Scholar 

  10. F.A. Silva, J.J. Williams, B.R. Mueller, M.P. Hentschel, P.D. Portella, and N. Chawla, Metall. Mater. Trans. A 41A, 2121 (2010).

    Article  Google Scholar 

  11. E. Maire and P.J. Withers, Int. Mater. Rev. 59, 1 (2014).

    Article  Google Scholar 

  12. J.J. Williams, K.E. Yazzie, E. Padilla, N. Chawla, X. Xiao, and F. De Carlo, Int. J. Fatigue 57, 79 (2013).

    Article  Google Scholar 

  13. P.J. Withers and M. Preuss, Ann. Rev. Mater. Res. 42, 81 (2012).

    Article  Google Scholar 

  14. J.-Y. Buffiere, E. Maire, J. Adrien, J.P. Masse, and E. Boller, Exp. Mech. 50, 289 (2010).

    Article  Google Scholar 

  15. F. Beckmann, R. Grupp, A. Haibel, M. Huppmann, M. Nöthe, A. Pyzalla, W. Reimers, A. Schreyer, and R. Zettler, Adv. Eng. Mater. 9, 939 (2007).

    Article  Google Scholar 

  16. B.M. Patterson, N.L. Cordes, K. Henderson, J.J. Williams, T. Stannard, S.S. Singh, A.R. Ovejero, X. Xiao, M. Robinson, and N. Chawla, J. Mater. Sci. 51, 171 (2016).

    Article  Google Scholar 

  17. N.L. Cordes, K. Henderson, T. Stannard, J.J. Williams, X. Xiao, M.W.C. Robinson, T.A. Schaedler, N. Chawla, and B.M. Patterson, Microsc. Today 23, 12 (2015).

    Article  Google Scholar 

  18. E. Maire, S.X. Zhou, J. Adrien, and M. Dimichiel, Eng. Fract. Mech. 78, 2679 (2011).

    Article  Google Scholar 

  19. E. Maire, V. Carmona, J. Courbon, and W. Ludwig, Acta Mater. 55, 6806 (2007).

    Article  Google Scholar 

  20. A. Isaac, F. Sket, W. Reimers, B. Camin, G. Sauthoff, and A.R. Pyzalla, Mater. Sci. Eng. A 478A, 108 (2008).

    Article  Google Scholar 

  21. A. Guvenilir, T.M. Breunig, J.H. Kinney, and S.R. Stock, Acta Mater. 45, 1977 (1997).

    Article  Google Scholar 

  22. N.C. Chapman, J. Silva, J.J. Williams, N. Chawla, and X. Xiao, Mater. Sci. Technol. 31, 573 (2014).

    Article  Google Scholar 

  23. K.H. Khor, J.-Y. Buffiere, W. Ludwig, H. Toda, H.S. Ubhi, P.J. Gregson, and I. Sinclair, J. Phys. Condens. Mater. 16, S3511 (2004).

    Article  Google Scholar 

  24. H. Toda, I. Sinclair, J.-Y. Buffiere, E. Maire, T. Connolley, M. Joyce, K.H. Khor, and P. Gregson, Philos. Mag. 83, 2429 (2003).

    Article  Google Scholar 

  25. P. Hruby, S.S. Singh, J.J. Williams, X. Xiao, F. De Carlo, and N. Chawla, Int. J. Fatigue 68, 136 (2014).

    Article  Google Scholar 

  26. L. Babout, T.J. Marrow, D. Engelberg, and P.J. Withers, Mater. Sci. Technol. 22, 1068 (2006).

    Article  Google Scholar 

  27. T.J. Marrow, L. Babout, A.P. Jivkov, P. Wood, D. Engelberg, N. Stevens, P.J. Withers, and R.C. Newman, J. Nucl. Mater. 352, 62 (2006).

    Article  Google Scholar 

  28. A. King, G. Johnson, D. Engelberg, W. Ludwig, and T.J. Marrow, Science 321, 382 (2008).

    Article  Google Scholar 

  29. S.S. Singh, J.J. Williams, X. Xiao, F. De Carlo, and N. Chawla, Fatigue of Materials II: Advances and Emergences in Understanding, ed. T.S. Srivatsan, A.M. Imam, and R. Srinivasan (Pittsburgh: Materials Science and Technology, 2012),

    Google Scholar 

  30. S.S. Singh, E. Guo, H. Xie, and N. Chawla, Intermetallics 62, 69 (2015).

    Article  Google Scholar 

  31. S.S. Singh, J.J. Loza, A.P. Merkle, and N. Chawla, Mater. Charact. 118, 102 (2016).

    Article  Google Scholar 

  32. J.J. Williams, Z. Flom, A.A. Amell, N. Chawla, X. Xiao, and F. De Carlo, Acta Mater. 58, 6194 (2010).

    Article  Google Scholar 

  33. S.S. Singh, C. Schwartzstein, J.J. Williams, X. Xiao, F. De Carlo, and N. Chawla, J. Alloys Compd. 602, 163 (2014).

    Article  Google Scholar 

  34. S.S. Singh, J.J. Williams, P. Hruby, X. Xiao, F. De Carlo, and N. Chawla, Integr. Mater. Manuf. Innov. 3, 1 (2014).

    Article  Google Scholar 

  35. S.S. Singh, J.J. Williams, M.F. Lin, X. Xiao, F. De Carlo, and N. Chawla, Mater. Res. Lett. 2, 217 (2014).

    Article  Google Scholar 

  36. S.S. Singh, J.J. Williams, T.J. Stannard, X. Xiao, F. De Carlo, and N. Chawla, Corros. Sci. 104, 330 (2016).

    Article  Google Scholar 

  37. J. Zhang, S. Kalnaus, M. Behrooz, and Y. Jiang, Metall. Mater. Trans. A 42, 448 (2011).

    Article  Google Scholar 

  38. L.J. Qiao, K.W. Gao, A.A. Volinsky, and X.Y. Li, Corros. Sci. 53, 3509 (2011).

    Article  Google Scholar 

  39. J. Ahmad, V. Papaspyropoulos, and A.T. Hopper, Eng. Fract. Mech. 38, 283 (1991).

    Article  Google Scholar 

  40. A.P. Merkle, L. Lechner, A. Steinbach, J. Gelb, M. Kienle, M.W. Phaneuf, D. Unrau, S.S. Singh, and N. Chawla, Microsc. Microanal. 28, S10 (2014).

    Google Scholar 

  41. N. Birbilis and R.G. Buchheit, J. Electrochem. Soc. 155, C117 (2008).

    Article  Google Scholar 

  42. R.K. Gupta, N.L. Sukiman, K.M. Fleming, M.A. Gibson, and N. Birbilis, ECS Electrochem. Lett. 1, C1 (2012).

    Article  Google Scholar 

  43. E. Linardi, R. Haddad, and L. Lanzani, Proc. Mater. Sci. 1, 550 (2012).

    Article  Google Scholar 

  44. S. Ghosh (Ph.D. Dissertation, University of Birmingham, 2008).

  45. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd ed. (Boca Raton: CRC Press, 2005).

    MATH  Google Scholar 

  46. ASTM G34: Standard Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test).

  47. J. Wloka, T. Hack, and S. Virtanen, Corros. Sci. 49, 1437 (2007).

    Article  Google Scholar 

  48. T. Marlaud, B. Malki, C. Henon, A. Deschamps, and B. Baroux, Corros. Sci. 53, 3139 (2011).

    Article  Google Scholar 

  49. T. Marlaud, B. Malki, A. Deschamps, and B. Baroux, Corros. Sci. 53, 1394 (2011).

    Article  Google Scholar 

  50. C. Vargel, Corrosion of Aluminum (San Diego: Elsevier Inc, 2004).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Office of Naval Research (ONR) under Contract Number N000141010350 (Drs. W. Mullins and A.K. Vasudevan, Program Managers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhilesh Chawla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.S., Stannard, T.J., Xiao, X. et al. In Situ X-ray Microtomography of Stress Corrosion Cracking and Corrosion Fatigue in Aluminum Alloys. JOM 69, 1404–1414 (2017). https://doi.org/10.1007/s11837-017-2413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2413-8

Navigation