Skip to main content
Log in

Simultaneous Recovery of Iron and Phosphorus from a High-Phosphorus Oolitic Iron Ore to Prepare Fe-P Alloy for High-Phosphorus Steel Production

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Unlike previous dephosphorization studies, the present work complies with a concept to recover phosphorus within the utilization of high-phosphorus oolitic iron ores to prepare Fe-P alloy for high-phosphorus steel production. Simultaneous enrichment of iron and phosphorus can be achieved by directly alloying the high-phosphorus oolitic iron ore at high reduction temperatures (≥1623 K). Neither fluxes nor other special additives need to be used. Consequently, the phosphorus element migrates from original apatite to the slag phase with the elevating temperature from 1323 K to 1473 K, and it further moves into metallic iron and forms Fe3P at 1623 K. A metalized iron-phosphorus alloy with assaying of 96.51% iron and 2.03% phosphorus content was obtained at 1623 K for 10 min at corresponding iron and phosphorus recovery rates of 97.50% and 64.51%, respectively. This process exhibits high economic efficiency and is practicable as a stepping-stone for the efficient and direct utilization of high-phosphorus iron ore resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B.R. Arvidson, Trans. Indian Inst. Met. 66, 467 (2013).

    Article  Google Scholar 

  2. S.X. Song, E.F. Campos-Toro, Y.M. Zhang, and A. Lopez-Valdivieso, Int. J. Min. Met. Mater. 20, 113 (2013).

    Article  Google Scholar 

  3. J.T. Yu, Z.C. Guo, and H.Q. Tang, J. Univ. Sci. Tech. Beijing 35, 986 (2013).

    Google Scholar 

  4. C.Q. Xiao, X.Y. Wu, and R. Chi, Appl. Biochem. Biotechnol. 176, 518 (2015).

    Article  Google Scholar 

  5. J.C. Wang, S.B. Shen, J.H. Kang, H.X. Li, and Z.C. Guo, Process. Biochem. 45, 1624 (2010).

    Article  Google Scholar 

  6. Y.F. Yu and C.Y. Qi, J. Wuhan Univ. Technol. (Mater. Sci. Ed.) 26, 176 (2011).

    Article  Google Scholar 

  7. D. Zhu, Y. Xiao, T. Chun, B. Chen, and J. Pan, XXV International Mineral Processing Congress (IMPC) 2010 Proceedings (Brisbane, QLD, Australia: Australasian Institute of Mining and Metallurgy, 2010), p. 1667.

  8. D.Q. Zhu, H. Wang, J. Pan, and C.C. Yang, J. Iron. Steel Res. Int. 23, 661 (2016).

    Article  Google Scholar 

  9. K. Ionkov, S. Gaydardzhiev, A.C. Araujo, D. Bastin, and M. Lacoste, Miner. Eng. 46, 119 (2013).

    Article  Google Scholar 

  10. G.H. Li, S.H. Zhang, M.J. Rao, Y.B. Zhang, and J. Tao, Int. J. Miner. Process. 124, 26 (2013).

    Article  Google Scholar 

  11. J.T. Gao, L. Guo, and Z.C. Guo, Metall. Mater. Trans. B 46, 2180 (2015).

    Article  Google Scholar 

  12. W. Yu, T.C. Sun, J. Kou, Y.X. Wei, C.Y. Xu, and Z.Z. Liu, ISIJ Int. 53, 427 (2013).

    Article  Google Scholar 

  13. H.L. Han, D.P. Duan, X. Wang, and S.M. Chen, Metall. Mater. Trans. B 45, 1634 (2014).

    Article  Google Scholar 

  14. D.Q. Zhu, Z.Q. Guo, J. Pan, and F. Zhang, Metals-Basel 6, 123 (2016).

    Article  Google Scholar 

  15. H.Q. Tang, W.D. Liu, H.Y. Zhang, and Z.C. Guo, Metall. Mater. Trans. B 45, 1683 (2014).

    Article  Google Scholar 

  16. H.Q. Tang, T.F. Qi, and Y.Q. Qin, JOM 67, 1956 (2015).

    Article  Google Scholar 

  17. S. Takeuchi, N. Sano, and Y. Matsushita, Tetsu-to-Hagané 66, 2050 (1980).

    Article  Google Scholar 

  18. K. Morita, M. Guo, N. Oka, and N. Sano, J. Mater. Cycles Waste Manag. 4, 93 (2002).

    Google Scholar 

  19. T. Kim and J. Lee, Metall. Mater. Trans. 52, 2233 (2011).

    Google Scholar 

  20. Y.B. Kang, T. Kim, and J. Lee, Ironmaker Steelmak. 39, 498 (2012).

    Article  Google Scholar 

  21. G.P. Zhou, S.C. Yu, Z.Y. Liu, J. Chen, Y.Q. Qiu, and G.D. Wang, J. Iron Steel Res. 23, 36 (2011).

    Google Scholar 

  22. R.A. Howell and D.C.V. Aken, Metall. Mater. Trans. A 46, 3309 (2015).

    Article  Google Scholar 

  23. S. Hong, J. Lee, K.S. Park, and S. Lee, Mater. Sci. Eng. A Struct. 589, 165 (2014).

    Article  Google Scholar 

  24. D.W. Yang, T.C. Sun, and C.Y. Xu, Min. Metall. Eng. 30, 29 (2010).

    Google Scholar 

  25. J.T. Gao, Y.W. Zhong, L. Guo, and Z.C. Guo, Metall. Mater. Trans. B 47, 1080 (2016).

    Article  Google Scholar 

  26. H.Q. Tang, Z.C. Guo, and Z.L. Zhao, J. Iron. Steel Res. Int. 17, 1 (2010).

    Article  Google Scholar 

  27. C. Cheng, Q.G. Xue, G. Wang, Y.Y. Zhang, and J.S. Wang, Metall. Mater. Trans. B 47, 154 (2016).

    Article  Google Scholar 

  28. G.H. Li, M.J. Rao, C.Z. Ouyang, S.H. Zhang, Z.W. Peng, and T. Jiang, ISIJ Int. 55, 2304 (2015).

    Article  Google Scholar 

  29. J. Cha, D. Kim, and S. Jung, Metall. Mater. Trans. B 46, 2165 (2015).

    Article  Google Scholar 

  30. W. Yu, T.C. Sun, and Q. Cui, Int. J. Miner. Process. 133, 119 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Torch Program Project of China (Grant 2011GH561685), China Scholarship Council (CSC) Ph.D. scholarship program, and Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources are sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congcong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhu, D., Pan, J. et al. Simultaneous Recovery of Iron and Phosphorus from a High-Phosphorus Oolitic Iron Ore to Prepare Fe-P Alloy for High-Phosphorus Steel Production. JOM 69, 1663–1668 (2017). https://doi.org/10.1007/s11837-017-2385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2385-8

Navigation