Skip to main content
Log in

Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In situ observation on the morphology evolution and phosphorous migration of gaseous-reduced, high-phosphorous oolitic iron ore during the melting process was carried out with a high-temperature confocal scanning laser microscope. The results showed that 1473 K (1200 °C) was a critical temperature at which the gangue minerals started to form into the slag phase while the iron grains remained in a solid state; in addition, the phosphorus remained in the slag phase. Since the separation of iron grains and P-bearing slag was not achieved at the low temperature under the conventional conditions, separate experiments of the iron phase and the P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 °C) by super gravity were carried out in this study. Based on the iron-slag separation by super gravity, phosphorus was removed effectively from the iron phase at the temperature below the melting point of iron. Iron grains moved along the super-gravity direction, joined, and concentrated as the iron phase on the filter, whereas the slag phase containing apatite crystals broke through the barriers of the iron grains and went through the filter. Consequently, increasing the gravity coefficient was definitely beneficial for the separation of the P-bearing slag phase from the iron phase. With the gravity coefficient of G = 1200, the mass fractions of separated slag and iron phases were close to their respective theoretical values, and the mass fraction of MFe in the separated iron phase was up to 98.09 wt pct and that of P was decreased to 0.083 wt pct. The recovery of MFe in the iron phase and that of P in the slag phase were up to 99.19 and 95.83 pct, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Wu, Z. Wen, and M. Chen: Steel Res. Int., 2011, vol. 82, pp. 494-500.

    Article  Google Scholar 

  2. R.C. Guimaraes, A.C. Araugo, and A.E.C. Peres: Miner. Eng., 2005, vol. 18, pp. 199-204.

    Article  Google Scholar 

  3. C.Y. Cheng, V.N. Misra, J. Clough, and R. Mun: Miner. Eng., 1999, vol. 12, pp. 1083-1092.

    Article  Google Scholar 

  4. S. Song, E.F. Campos-Toro, Y. Zhang, and A. Lopez-valdivieso: Int. J. Miner. Metall. Mater., 2013, vol. 20, pp. 113-119.

    Article  Google Scholar 

  5. A.P.L. Nunes, C.L.L. Pinto, G.E.S. Valadao, and P.R.M. Viana: Miner. Eng., 2012, vol. 39, pp. 206-212.

    Article  Google Scholar 

  6. X.Y. Hao, H.X. Dai, and Z.Q. Zhao: Met. Miner., 2007, vol. 01, pp. 07-12.

    Google Scholar 

  7. J.T. Yu, Z.C. Guo, and H.Q. Tang: ISIJ Int., 2013, vol. 53, pp. 2056-2064.

    Article  Google Scholar 

  8. Y. Zhang and M. Muhammed: Hydrometallurgy, 1989, vol. 21, pp. 255-275.

    Article  Google Scholar 

  9. M.J. Fisher-White, R.R. Lovel, and G.J. Sparrow: ISIJ Int., 2012, vol. 52, pp. 1794-1800.

    Article  Google Scholar 

  10. M.J. Fisher-White, R.R. Lovel, and G.J. Sparrow: ISIJ Int., 2012, vol. 52, pp. 797-803.

    Article  Google Scholar 

  11. Y.S. Jin, T. Jiang, Y.B. Yang, L. Qian, L.G. Hui, and G.Y. Feng: J. Cent. South Univ. Technol., 2006, vol. 13, pp. 673-677.

    Article  Google Scholar 

  12. O. Priha, T. Sarlin, P. Blomberg, L. Wendling, J. Makinen, M. Arnold, and P. Kinnunen: Hydrometallurgy, 2014, vol. 150, pp. 269-275.

    Article  Google Scholar 

  13. P. Delvasto, A. Valverde, A. Ballester, J.A. Munoz, F. Gonzalez, M.L. Blazquez, J.M. Igual, and C. Garcia-Balboa: Hydrometallurgy, 2008, vol. 92, pp. 124-129.

    Article  Google Scholar 

  14. P. Delvasto, A. Ballester, J.A. Munoz, F. Gonzalez, M.L. Blazquez, J.M. Igual, and C.G. Balboa: Miner. Eng., 2009, vol. 22, pp. 01-09.

    Article  Google Scholar 

  15. T.M. Bhatti and W. Yawar: Hydrometallurgy, 2010, vol. 103, pp. 54-59.

    Article  Google Scholar 

  16. K. Ionkov, S. Grydardzhiev, A.C. de Araujo, D. Bastin, and M. Lacoste: Miner. Eng., 2013, vol. 46-47, pp. 119-127.

    Article  Google Scholar 

  17. C.Y. Xu, T.C. Sun, J. Kou, Y.L. Li, X.L. Mo, and L.G. Tang: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 2806-2812.

    Article  Google Scholar 

  18. E. Matinde and M. Hino: ISIJ Int., 2011, vol. 51, pp. 544-551.

    Article  Google Scholar 

  19. E. Matinde and M. Hino: ISIJ Int., 2011, vol. 51, pp. 220-227.

    Article  Google Scholar 

  20. W. Yu, T.C. Sun, J. Kou, Y.X. Wei, C.Y. Xu, and Z.Z. Liu: ISIJ Int., 2013, vol. 53, pp. 427-433.

    Article  Google Scholar 

  21. S.J. Bai, S.M. Wen, D.W. Liu, W.D. Zhang, and Y.J. Xian: ISIJ Int., 2011, vol. 51, pp. 1601-1607.

    Article  Google Scholar 

  22. L. Guo, J.T. Gao, Y.W. Zhong, H. Gao, and Z.C. Guo: ISIJ Int., 2015, vol. 55, pp. 1806-1815.

    Article  Google Scholar 

  23. Z.L. Zhao, H.Q. Tang, and Z.C. Guo: J. Univ. Sci. Technol. Beijing, 2009, vol. 31, pp. 964-969.

    Google Scholar 

  24. Z.L. Zhao, H.Q. Tang, and Z.C. Guo: J. Iron Steel Res., 2013, vol. 20, pp. 16-24.

    Article  Google Scholar 

  25. H.Q. Tang, Z.C. Guo, and Z.L. Zhao: J. Iron Steel Res., 2010, vol. 17, pp. 01-06.

    Article  Google Scholar 

  26. M. Omran, T. Fabritius, and R. Mattila: Powder Technol., 2015, vol. 269, pp. 7-14.

    Article  Google Scholar 

  27. M. Omran, T. Fabritius, N. Abdel-Khalek, and A. Elmahdy: Appl. Surf. Sci., 2015, vol. 345, pp. 127-140.

    Article  Google Scholar 

  28. M. Omran, T. Fabritius, N. Abdel-Khalek, and A. Elmahdy: Sep. Purif. Technol., 2014, vol. 136, pp. 223-232.

    Article  Google Scholar 

  29. M. Omran, T. Fabritius, N. Abdel-Khalek, M. El-Aref, A.E.-H. Elmaniwi, M. Nasr, and A. Elmahdy: J. Miner. Mater. Charact. Eng., 2014, vol. 2, pp. 414-427.

    Google Scholar 

  30. H.Q. Tang, D.W. Liu, H.Y. Zhang, and Z.C. Guo: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1683-1694.

    Article  Google Scholar 

  31. J.T. Gao, L. Guo, and Z.C. Guo: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2180-2189.

    Article  Google Scholar 

  32. J. Zhang: Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Bejing, China, 2007.

    Google Scholar 

  33. X. Yang, J. Duan, C. Shi, M. Zhang Y. Zhang, and J. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 738-70.

    Article  Google Scholar 

  34. X. Yang, C. Shi, M. Zhang, J. Duan, and J. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 951-76.

    Article  Google Scholar 

  35. S. Fukagai, T. Hamano, and F. Tsukihashi: ISIJ Int., 2007, vol. 47, pp. 187-189.

    Article  Google Scholar 

  36. T. Hamano, S. Fukagai, and F. Tsukihashi: ISIJ Int., 2006, vol. 46, pp. 490-492.

    Article  Google Scholar 

  37. T.P.D. Rajan, R.M. Pillai, and B.C. Pai: Int. J. Cast Metal Res., 2008, vol. 21, pp. 214-218.

    Article  Google Scholar 

  38. M.R. Rahimipour and M. Sobhani: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1120-1123.

    Article  Google Scholar 

  39. L.X. Zhao, Z.C. Guo, Z. Wang, and M.Y. Wang: Metall. Mater. Trans. B, 2010, vol. 21, pp. 505-508.

    Article  Google Scholar 

  40. L.X. Zhao, Z.C. Guo, Z. Wang, and M.Y. Wang: Metall. Mater. Trans. A, 2010, vol. 21, pp. 670-675.

    Article  Google Scholar 

  41. B. Phillips and A. Muan: J. Am. Ceram. Soc., 1959, vol. 42, pp. 413-423.

    Article  Google Scholar 

  42. H. Kimura, T. Ogawa, M. Kakiki, A. Matsumoto, and F. Tsukihashi: ISIJ Int., 2005, vol. 45, pp. 506-512.

    Article  Google Scholar 

  43. H. Matsuura, M. Jurashige, M. Naka, and F. Tsukihashi: ISIJ Int., 2009, vol. 49, pp. 1283-1289.

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Natural Science Foundations of China (Nos. 51404025 and 51234001) and the Fundamental Research Funds for the Central Universities (FRF-TP-15-009A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhancheng Guo.

Additional information

Manuscript submitted October 22, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Zhong, Y., Guo, L. et al. Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity. Metall Mater Trans B 47, 1080–1092 (2016). https://doi.org/10.1007/s11663-015-0575-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0575-8

Keywords

Navigation