Skip to main content

Advertisement

Log in

Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, an energy-saving and environmentally friendly method to produce low-phosphorus molten iron from high-phosphorus oolitic hematite was experimentally investigated and theoretically analyzed. The results indicate that biomass char is a suitable reducing agent for the proposed method. In the direct reduction stage, the ore–char briquette reached a metallization degree of 80–82% and a residual carbon content of 0.1–0.3 mass%. Under the optimized condition, phosphorus remained in the gangue as calcium phosphate. In the melting separation stage, phosphorus content ([%P]) in molten iron could be controlled by introducing a Na2CO3 additive, and the phosphorus behavior could be predicted using ion molecular coexistence theory. Molten iron with [%P] less than 0.3 mass% was obtained from the metallic briquettes with the aforementioned quality by introducing 2–4% Na2CO3 and the iron recovery rate was 75–78%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Tong, Y. Li, Q. Zhou, F. Rao, and Y. Cui, Eng. Sci. (in Chinese) 7, 323–326 (2005).

    Google Scholar 

  2. H. Shen, B. Zhou, X. Huang, Y. Zhang, and X. Lin, Min. Metall. Eng. (in Chinese) 28, 30–35 (2008).

    Google Scholar 

  3. J. Wu, Z. Wen, and M. Cen, Steel Res. Int. 82, 494–500 (2011).

    Article  Google Scholar 

  4. P. Delvasto, A. Valverde, A. Ballester, J.A. Munoz, F. Gonzalez, M.L. Blazquez, J.M. Igual, and C.G. Balboa, Hydrometallurgy 92, 124–129 (2008).

    Article  Google Scholar 

  5. O.W. Obot, C.N. Anyakwo, and J. Herbariorum, J. Microb. Antimicrob. 4, 115–122 (2012).

    Article  Google Scholar 

  6. J. Yu, Z. Guo, and H. Tang, ISIJ Int. 53, 2056–2064 (2013).

    Article  Google Scholar 

  7. Y. Jin, T. Jiang, Y. Yang, Q. Li, G. Li, Y. Guo, and J. Cent, South Univ. Technol. 13, 673–677 (2006).

    Article  Google Scholar 

  8. M.J. Fisher, R.R. Lovel, and G.J. Sparrow, ISIJ Int. 52, 797–803 (2012).

    Article  Google Scholar 

  9. D. Zhu, T. Chun, and J. Pan, Int. J. Min. Metall. Mater. 20, 505–512 (2013).

    Article  Google Scholar 

  10. W. Yu, T. Sun, and J. Kou, ISIJ Int. 53, 427–433 (2013).

    Article  Google Scholar 

  11. M. Elias and H. Mitsutaka, ISIJ Int. 51, 220–227 (2011).

    Article  Google Scholar 

  12. M. Elias and H. Mitsutaka, ISIJ Int. 51, 544–551 (2011).

    Article  Google Scholar 

  13. Y. Sun, Y. Han, P. Gao, Z. Wang, and D. Ren, Int. J. Min. Metall. Mater. 20, 411–419 (2013).

    Article  Google Scholar 

  14. J. Yin, X. Lv, and C. Bai, ISIJ Int. 52, 1579–1584 (2012).

    Article  Google Scholar 

  15. S. Li, Y. Zhang, J. Gao, J. Li, P. Chen, R. Liu, and Y. Wang, Chin. J. Process. Eng. (in Chinese) 11, 599–605 (2011).

    Google Scholar 

  16. C.P. Manning and R.J. Fruehan, JOM 63, 36–43 (2001).

    Article  Google Scholar 

  17. J.M. McClell and G.E. Metius, JOM 65, 30–34 (2003).

    Article  Google Scholar 

  18. M.G. Montiano, E. Diaz-Faes, C. Barriocanal, and R. Alvarez, Fuel 116, 175–182 (2014).

    Article  Google Scholar 

  19. M. Zandi, M. Martinez-Pacheco, and T.A.T. Fray, Miner. Eng. 23, 1139–1145 (2010).

    Article  Google Scholar 

  20. H. Zuo, Z. Hu, J. Zhang, J. Li, and Z. Liu, Int. J. Min. Metall. Mater. 20, 514–521 (2013).

    Article  Google Scholar 

  21. A. Babich, D. Senk, and M. Frenandez, ISIJ Int. 50, 81–88 (2010).

    Article  Google Scholar 

  22. T. Mani, N. Mahinpey, and P. Murugan, Chem. Eng. Sci. 66, 36–41 (2011).

    Article  Google Scholar 

  23. R. Khalil, G. Varhegyi, S. Jaschke, M. Gronli, and J. Hustand, Energy Fuels 23, 94–100 (2009).

    Article  Google Scholar 

  24. Y. Huang, X. Yin, X. Wu, C. Wang, and J. Xie, Biotechnol. Adv. 27, 568–572 (2009).

    Article  Google Scholar 

  25. H. Tang, L. Ma, J. Wang, and Z. Guo, J. Iron. Steel Res. Int. 21, 1009–1015 (2014).

    Article  Google Scholar 

  26. H. Tang, W. Liu, H. Zhang, and Z. Guo, Metall. Mater. Trans. B 45B, 1683–1693 (2014).

    Article  Google Scholar 

  27. H. Tang, L. Fan, L. Ma, and Z. Guo, J. Univ. Technol. Sci. Beijing 36, 868–874 (2014).

    Google Scholar 

  28. H. Tang, T. Qi, L. Fan, and Z. Guo, TMS 2015-6th International Symposium on High Temperature Metallurgical Processing (New York, Wiley, 2015), pp. 365–370.

  29. D. Ye and J. Hu, Thermodynamic Data of Inorganic Substances (Beijing: Metallurgy Industry Press, 2002), pp. 26–48.

    Google Scholar 

  30. J. Zhang, Computational Thermodynamics of Metallurgical Melts and Solutions (Beijing: Metallurgical Industry Press, 2007), pp. 376–385.

  31. J. Diao, Applied Fundamental Research on Medium and High Phosphorus Hot Metal Refining by Duplex Process in Converter (Chongqing Unversity, China: Doctoral Dissertation, 2010), pp. 179–184.

Download references

Acknowledgements

The authors wish to thank Chinese Natural Science Foundation for the support under the Project No. 51144010. Thanks are also given to State Key Laboratory of Advanced Metallurgy USTB for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Qi, T. & Qin, Y. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char. JOM 67, 1956–1965 (2015). https://doi.org/10.1007/s11837-015-1541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1541-2

Keywords

Navigation