Skip to main content
Log in

Evolution of the Corrosion Morphology on AZ31B Tracked Electrochemically and by In Situ Microscopy in Chloride-Containing Media

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The evolution of open-circuit corrosion morphology as a function of immersion time for Mg alloy AZ31B in 0.6-M NaCl solution was investigated. Real-time optical microscopy accompanied by simultaneous electrochemical characterization was used to characterize the filiform corrosion (FFC) of AZ31B. Specifically, the behavior of propagating corrosion filaments on the metal surface was observed, and correlations among polarization resistance, filament propagation rates, open-circuit potential, and active coverage of local corrosion sites were revealed. Three distinct stages of corrosion were observed in 0.6-M NaCl. An initial passive region, during which a slow potential rise occurred (termed stage I), a second FFC region (termed stage II) with shallow penetrating, distinct filaments, and a final FFC region (termed stage III) with deeper penetrating filaments, aligned to form a linear front. The electrochemical properties of each stage are discussed, providing insights into the penetration rates and corrosion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The use of the terms for each regime of FFC, stages I, II, and III, was adopted from Krebs et al.13

References

  1. T.B. Abbott, Corrosion 71, 120 (2015).

    Article  Google Scholar 

  2. J.A. Yuwono, N. Birbilis, K.S. Williams, and N.V. Medhekar, J. Phys. Chem. C 120, 26922 (2016).

    Article  Google Scholar 

  3. S. Thomas, O. Gharbi, S.H. Salleh, P. Volovitch, K. Ogle, and N. Birbilis, Electrochim. Acta 210, 271 (2016).

    Article  Google Scholar 

  4. Y. Yang, F. Scenini, and M. Curioni, Electrochim. Acta 198, 174 (2016).

    Article  Google Scholar 

  5. Z.P. Cano, M. Danaie, J.R. Kish, J.R. McDermid, G.A. Botton, and G. Williams, Corrosion 71, 146 (2015).

    Article  Google Scholar 

  6. Z.P. Cano, J.R. Kish, and J.R. McDermid, Magnesium Technology 2014, ed. M. Alderman, M.V. Manuel, N. Hort, and N.R. Neelameggham (Warrendale, PA: The Minerals, Metals & Materials Society; Hoboken, NJ: John Wiley & Sons, 2014), pp. 335–340.

  7. Z.P. Cano, J.R. Kish, and J.R. McDermid, J. Electrochem. Soc. 163, C62 (2015).

    Article  Google Scholar 

  8. S. Pawar, X. Zhou, G.E. Thompson, G. Scamans, and Z. Fan, J. Electrochem. Soc. 162, C442 (2015).

    Article  Google Scholar 

  9. L. Yang, X. Zhou, M. Curioni, S. Pawar, H. Liu, Z. Fan, G. Scamans, and G. Thompson, J. Electrochem. Soc. 162, C362 (2015).

    Article  Google Scholar 

  10. M. Curioni, F. Scenini, T. Monetta, and F. Bellucci, Electrochim. Acta 166, 372 (2015).

    Article  Google Scholar 

  11. M. Curioni, J.M. Torrescano-Alvarez, Y.F. Yang, and F. Scenini, Corrosion 73, 463 (2017).

    Article  Google Scholar 

  12. G. Williams, N. Birbilis, and H.N. McMurray, Faraday Discuss. 180, 313 (2015).

    Article  Google Scholar 

  13. H.M. Krebs, A. Chirazi, L. Lechner, J. Gleb, X. Zhou, G.E. Thompson, and P.J. Withers, “Time-Evolved Correlative Imaging Applied to the Corrosion Study of Mg Alloys In Alkali Environment” (Paper presented at FIMPART 2015, Hyderabad, India).

  14. G. Williams, H.L. Dafydd, and R. Grace, Electrochim. Acta 109, 489 (2013).

    Article  Google Scholar 

  15. G. Williams and R. Grace, Electrochim. Acta 56, 1894 (2011).

    Article  Google Scholar 

  16. P. Schmutz, V. Guillaumin, R.S. Lillard, J.A. Lillard, and G.S. Frankel, J. Electrochem. Soc. 150, B99 (2003).

    Article  Google Scholar 

  17. J.M.C. Mol, B.R.W. Hinton, D.H. Van Der Weijde, J.H.W. De Wit, and S. Van Der Zwaag, J. Mater. Sci. 35, 1629 (2000).

    Article  Google Scholar 

  18. O. Lunder, J.E. Lein, S.M. Hesjevik, T.K. Aune, and K. Nisancioglu, Werkst. Korros. 45, 331 (1994).

    Article  Google Scholar 

  19. L.G. Bland, A.D. King, N. Birbilis, and J.R. Scully, Corrosion 71, 128 (2015).

    Article  Google Scholar 

  20. A.D. King, N. Birbilis, and J.R. Scully, Electrochim. Acta 121, 394 (2014).

    Article  Google Scholar 

  21. M.A. Melia, P. Steiner, N. Birbilis, J.M. Fitz-Gerald, and J.R. Scully, Corrosion 72, 95 (2015).

    Google Scholar 

  22. M.L. Bland, M.L. Scully, and D.J. Scully, Corrosion 0, null.

  23. A.S. G1, in, ASTM International, West Conshohocken, PA, 2011.

  24. V. Shkirskiy, A.D. King, O. Gharbi, P. Volovitch, J.R. Scully, K. Ogle, and N. Birbilis, Eur. J. Chem. Phys. Phys. Chem. 16, 536 (2015).

    Article  Google Scholar 

  25. L. Wang, T. Shinohara, B.-P. Zhang, and H. Iwai, J. Alloys Compd. 485, 747 (2009).

    Article  Google Scholar 

  26. M.P. Brady, G. Rother, L.M. Anovitz, K.C. Littrell, K.A. Unocic, H.H. Elsentriecy, G.L. Song, J.K. Thomson, N.C. Gallego, and B. Davis, J. Electrochem. Soc. 162, C140 (2015).

    Article  Google Scholar 

  27. K.A. Unocic, H.H. Elsentriecy, M.P. Brady, H.M. Meyer, G.L. Song, M. Fayek, R.A. Meisner, and B. Davis, J. Electrochem. Soc. 161, C302 (2014).

    Article  Google Scholar 

  28. R.L. Ryan and E. McCafferty, J. Electrochem. Soc. 142, 2594 (1995).

    Article  Google Scholar 

  29. P.M. Natishan and E. McCafferty, J. Electrochem. Soc. 136, 53 (1989).

    Article  Google Scholar 

  30. J.R. Scully, D.E. Peebles, A.D. Romig, D.R. Frear, and C.R. Hills, Metall. Trans. A 23, 2641 (1992).

    Article  Google Scholar 

  31. J.R. Scully, R.P. Frankenthal, K.J. Hanson, D.J. Siconolfi, and J.D. Sinclair, J. Electrochem. Soc. 137, 1365 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on research sponsored by the US Army Research Laboratory under Agreement Number W911NF-14-2-0005 with Dr. Joe Labukas as Project manager. The US government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Melia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melia, M.A., Cain, T.W., Briglia, B.F. et al. Evolution of the Corrosion Morphology on AZ31B Tracked Electrochemically and by In Situ Microscopy in Chloride-Containing Media. JOM 69, 2322–2327 (2017). https://doi.org/10.1007/s11837-017-2377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2377-8

Navigation