JOM

, Volume 69, Issue 11, pp 2322–2327 | Cite as

Evolution of the Corrosion Morphology on AZ31B Tracked Electrochemically and by In Situ Microscopy in Chloride-Containing Media

  • M. A. Melia
  • T. W. Cain
  • B. F. Briglia
  • J. R. Scully
  • J. M. Fitz-Gerald
Article

Abstract

The evolution of open-circuit corrosion morphology as a function of immersion time for Mg alloy AZ31B in 0.6-M NaCl solution was investigated. Real-time optical microscopy accompanied by simultaneous electrochemical characterization was used to characterize the filiform corrosion (FFC) of AZ31B. Specifically, the behavior of propagating corrosion filaments on the metal surface was observed, and correlations among polarization resistance, filament propagation rates, open-circuit potential, and active coverage of local corrosion sites were revealed. Three distinct stages of corrosion were observed in 0.6-M NaCl. An initial passive region, during which a slow potential rise occurred (termed stage I), a second FFC region (termed stage II) with shallow penetrating, distinct filaments, and a final FFC region (termed stage III) with deeper penetrating filaments, aligned to form a linear front. The electrochemical properties of each stage are discussed, providing insights into the penetration rates and corrosion model.

Notes

Acknowledgements

This material is based on research sponsored by the US Army Research Laboratory under Agreement Number W911NF-14-2-0005 with Dr. Joe Labukas as Project manager. The US government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the US government.

Supplementary material

11837_2017_2377_MOESM1_ESM.mp4 (77.4 mb)
Supplementary material 1 (MP4 79217 kb)
11837_2017_2377_MOESM2_ESM.mp4 (7.1 mb)
Supplementary material 2 (MP4 7229 kb)
11837_2017_2377_MOESM3_ESM.mp4 (18.7 mb)
Supplementary material 3 (MP4 19102 kb)
11837_2017_2377_MOESM4_ESM.mp4 (55.9 mb)
Supplementary material 4 (MP4 57281 kb)
11837_2017_2377_MOESM5_ESM.pptx (641 kb)
Supplementary material 5 (PPTX 641 kb)

References

  1. 1.
    T.B. Abbott, Corrosion 71, 120 (2015).CrossRefGoogle Scholar
  2. 2.
    J.A. Yuwono, N. Birbilis, K.S. Williams, and N.V. Medhekar, J. Phys. Chem. C 120, 26922 (2016).CrossRefGoogle Scholar
  3. 3.
    S. Thomas, O. Gharbi, S.H. Salleh, P. Volovitch, K. Ogle, and N. Birbilis, Electrochim. Acta 210, 271 (2016).CrossRefGoogle Scholar
  4. 4.
    Y. Yang, F. Scenini, and M. Curioni, Electrochim. Acta 198, 174 (2016).CrossRefGoogle Scholar
  5. 5.
    Z.P. Cano, M. Danaie, J.R. Kish, J.R. McDermid, G.A. Botton, and G. Williams, Corrosion 71, 146 (2015).CrossRefGoogle Scholar
  6. 6.
    Z.P. Cano, J.R. Kish, and J.R. McDermid, Magnesium Technology 2014, ed. M. Alderman, M.V. Manuel, N. Hort, and N.R. Neelameggham (Warrendale, PA: The Minerals, Metals & Materials Society; Hoboken, NJ: John Wiley & Sons, 2014), pp. 335–340.Google Scholar
  7. 7.
    Z.P. Cano, J.R. Kish, and J.R. McDermid, J. Electrochem. Soc. 163, C62 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Pawar, X. Zhou, G.E. Thompson, G. Scamans, and Z. Fan, J. Electrochem. Soc. 162, C442 (2015).CrossRefGoogle Scholar
  9. 9.
    L. Yang, X. Zhou, M. Curioni, S. Pawar, H. Liu, Z. Fan, G. Scamans, and G. Thompson, J. Electrochem. Soc. 162, C362 (2015).CrossRefGoogle Scholar
  10. 10.
    M. Curioni, F. Scenini, T. Monetta, and F. Bellucci, Electrochim. Acta 166, 372 (2015).CrossRefGoogle Scholar
  11. 11.
    M. Curioni, J.M. Torrescano-Alvarez, Y.F. Yang, and F. Scenini, Corrosion 73, 463 (2017).CrossRefGoogle Scholar
  12. 12.
    G. Williams, N. Birbilis, and H.N. McMurray, Faraday Discuss. 180, 313 (2015).CrossRefGoogle Scholar
  13. 13.
    H.M. Krebs, A. Chirazi, L. Lechner, J. Gleb, X. Zhou, G.E. Thompson, and P.J. Withers, “Time-Evolved Correlative Imaging Applied to the Corrosion Study of Mg Alloys In Alkali Environment” (Paper presented at FIMPART 2015, Hyderabad, India).Google Scholar
  14. 14.
    G. Williams, H.L. Dafydd, and R. Grace, Electrochim. Acta 109, 489 (2013).CrossRefGoogle Scholar
  15. 15.
    G. Williams and R. Grace, Electrochim. Acta 56, 1894 (2011).CrossRefGoogle Scholar
  16. 16.
    P. Schmutz, V. Guillaumin, R.S. Lillard, J.A. Lillard, and G.S. Frankel, J. Electrochem. Soc. 150, B99 (2003).CrossRefGoogle Scholar
  17. 17.
    J.M.C. Mol, B.R.W. Hinton, D.H. Van Der Weijde, J.H.W. De Wit, and S. Van Der Zwaag, J. Mater. Sci. 35, 1629 (2000).CrossRefGoogle Scholar
  18. 18.
    O. Lunder, J.E. Lein, S.M. Hesjevik, T.K. Aune, and K. Nisancioglu, Werkst. Korros. 45, 331 (1994).CrossRefGoogle Scholar
  19. 19.
    L.G. Bland, A.D. King, N. Birbilis, and J.R. Scully, Corrosion 71, 128 (2015).CrossRefGoogle Scholar
  20. 20.
    A.D. King, N. Birbilis, and J.R. Scully, Electrochim. Acta 121, 394 (2014).CrossRefGoogle Scholar
  21. 21.
    M.A. Melia, P. Steiner, N. Birbilis, J.M. Fitz-Gerald, and J.R. Scully, Corrosion 72, 95 (2015).Google Scholar
  22. 22.
    M.L. Bland, M.L. Scully, and D.J. Scully, Corrosion 0, null.Google Scholar
  23. 23.
    A.S. G1, in, ASTM International, West Conshohocken, PA, 2011.Google Scholar
  24. 24.
    V. Shkirskiy, A.D. King, O. Gharbi, P. Volovitch, J.R. Scully, K. Ogle, and N. Birbilis, Eur. J. Chem. Phys. Phys. Chem. 16, 536 (2015).CrossRefGoogle Scholar
  25. 25.
    L. Wang, T. Shinohara, B.-P. Zhang, and H. Iwai, J. Alloys Compd. 485, 747 (2009).CrossRefGoogle Scholar
  26. 26.
    M.P. Brady, G. Rother, L.M. Anovitz, K.C. Littrell, K.A. Unocic, H.H. Elsentriecy, G.L. Song, J.K. Thomson, N.C. Gallego, and B. Davis, J. Electrochem. Soc. 162, C140 (2015).CrossRefGoogle Scholar
  27. 27.
    K.A. Unocic, H.H. Elsentriecy, M.P. Brady, H.M. Meyer, G.L. Song, M. Fayek, R.A. Meisner, and B. Davis, J. Electrochem. Soc. 161, C302 (2014).CrossRefGoogle Scholar
  28. 28.
    R.L. Ryan and E. McCafferty, J. Electrochem. Soc. 142, 2594 (1995).CrossRefGoogle Scholar
  29. 29.
    P.M. Natishan and E. McCafferty, J. Electrochem. Soc. 136, 53 (1989).CrossRefGoogle Scholar
  30. 30.
    J.R. Scully, D.E. Peebles, A.D. Romig, D.R. Frear, and C.R. Hills, Metall. Trans. A 23, 2641 (1992).CrossRefGoogle Scholar
  31. 31.
    J.R. Scully, R.P. Frankenthal, K.J. Hanson, D.J. Siconolfi, and J.D. Sinclair, J. Electrochem. Soc. 137, 1365 (1990).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • M. A. Melia
    • 1
  • T. W. Cain
    • 1
  • B. F. Briglia
    • 1
  • J. R. Scully
    • 1
  • J. M. Fitz-Gerald
    • 1
  1. 1.Department of Materials Science and Engineering, School of Engineering and Applied ScienceUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations