Skip to main content
Log in

Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification

  • Published:
JOM Aims and scope Submit manuscript

Abstract

As the metal additive manufacturing (AM) industry moves towards industrial production, the need for qualification standards covering all aspects of the technology becomes ever more prevalent. While some standards and specifications for documenting the various aspects of AM processes and materials exist and continue to evolve, many such standards still need to be matured or are under consideration/development within standards development organizations. An important subset of this evolving the standardization domain has to do with critical property measurements for AM materials. While such measurement procedures are well documented, with various legacy standards for conventional metallic material forms such as cast or wrought structural alloys, many fewer standards are currently available to enable systematic evaluation of those properties in AM-processed metallic materials. This is due in part to the current lack of AM-specific standards and specifications for AM materials and processes, which are a logical precursor to the material characterization standards for any material system. This paper summarizes some of the important standardization activities, as well as limitations associated with using currently available standards for metal AM with a focus on measuring mission-critical properties. Technical considerations in support of future standards development, as well as a pathway for qualification/certification of AM parts enabled by the appropriate standardization landscape, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Ref. 17 with permission)

Fig. 2

(adapted from Ref. 20 with permission)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. As defined by NASA, AM risk is a function of the following criteria: (1) all volumes and surfaces can be reliably inspected or proof tested, (2) the as-built surface can be fully removed on all fatigue-critical surfaces, (3) surfaces interfacing with sacrificial supports are fully accessible or can be fully improved, (4) structural walls or protrusions are ≤1 mm in cross-section, and (5) critical regions of the part require sacrificial supports.

References

  1. GE Additive (www.geadditive.com), (2016). Accessed 20 Dec 2016.

  2. M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, JOM 68, 747 (2016).

    Article  Google Scholar 

  3. M. Gorelik, Int. J. Fatigue 94, 168 (2017).

    Article  Google Scholar 

  4. M. Seifi, M. Dahar, R. Aman, O. Harrysson, J. Beuth, and J.J. Lewandowski, JOM 67, 597 (2015).

    Article  Google Scholar 

  5. J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res. 46, 151 (2016).

    Article  Google Scholar 

  6. N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, Addit. Manuf. 8, 12 (2015).

    Article  Google Scholar 

  7. B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309 (2015).

    Article  Google Scholar 

  8. H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, and B. Stucker, Mater. Des. 86, 545 (2015).

    Google Scholar 

  9. P. Li, D.H. Warner, A. Fatemi, and N. Phan, Int. J. Fatigue 85, 130 (2015).

    Article  Google Scholar 

  10. N. Hrabe, T. Gnaupel-Herold, and T. Quinn, Int. J. Fatigue 94, 202 (2016).

    Article  Google Scholar 

  11. G. Nicoletto, Int. J. Fatigue 94, 255 (2016).

    Article  Google Scholar 

  12. D. Greitemeier, F. Palm, F. Syassen, and T. Melz, Int. J. Fatigue 94, 211 (2016).

    Article  Google Scholar 

  13. S. Beretta and S. Romano, Int. J. Fatigue 94, 178 (2016).

    Article  Google Scholar 

  14. M. Gorelik, Y. Lenets, and M.N. Menon, in ASME Turbo Expo (ASME, New York, NY, 2005), GT2005-68770.

  15. R. Corran, M. Gorelik, D. Lehmann, and S. Mosset, in ASME Turbo Expo (ASME, Barcelona, 2006), GT2006-90843.

  16. U.S. Department of Transportation-Federal Aviation Administration Notice N 8900.391, Additive Manufacturing in Maintenance, Preventive Maintenance, and Alteration of Aircraft, Aircraft Engines, Propellers, and Appliances (Washington D.C., 2016).

  17. D. Wells, Engineering and Quality Standard for Additively Manufactured Spaceflight Hardware (Marshall Space Flight Center, Huntsville, 2016).

  18. Food and Drug Administration, Technical Considerations for Additive Manufactured Devices—Draft Guidance for Industry and Food and Drug Administration Staff (Silver Spring, 2016).

  19. M. Di Prima, J. Coburn, D. Hwang, J. Kelly, A. Khairuzzaman, and L. Ricles, 3D Print. Med. 2, 1 (2015).

    Article  Google Scholar 

  20. Technology Exchange on Coordination of U.S. Standards Development for Additive Manufacturing (State College, PA, 2015).

  21. B.A. Cowles, Summary Report: Joint Federal Aviation Administration—Air Force Workshop on Qualification/Certification of Additively Manufactured Parts (Dayton, 2016).

  22. B.A. Cowles, Summary Report: The Second Joint Federal Aviation Administration—Air Force Workshop on Qualification/Certification of Additively Manufactured Parts (Dayton, 2017).

  23. N. Hrabe, N. Barbosa, S.R. Daniewicz, and N. Shamsaei, Findings from the NIST/ASTM Workshop on Mechanical Behavior of Additive Manufacturing Components, in NIST Advanced Manufacturing Series, 2016.

  24. T.M. Pollock, Nat. Mater. 15, 809 (2016).

    Article  Google Scholar 

  25. ASTM Standard F3122, in ASTM Book of Standards (ASTM International, West Conshohocken, 2014).

  26. A.D. Peralta, M. Enright, M. Megahed, J. Gong, M. Roybal, and J. Craig, Integr. Mater. Manuf. Innov. 5, 1 (2016).

    Article  Google Scholar 

  27. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  Google Scholar 

  28. B. Dutta and F.H.S. Froes, Adv. Mater. Res. 1019, 19 (2014).

    Article  Google Scholar 

  29. S. Draper, B. Lerch, J. Telesman, R. Martin, I. Locci, A. Garg, and A. Ring, NASA/TM2016-219136-Materials Characterization of Electron Beam Melted Ti-6Al-4V (NASA Glenn Research Center, Cleveland, OH, United States, 2016).

  30. A.M. Beese and B.E. Carroll, JOM 68, 724 (2016).

    Article  Google Scholar 

  31. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Appl. Phys. Rev. 2, 1 (2015).

    Article  Google Scholar 

  32. A. Yadollahi and N. Shamsaei, Int. J. Fatigue 98, 14 (2017).

    Article  Google Scholar 

  33. M. Filippini, S. Beretta, L. Patriarca, G. Pasquero, and S. Sabbadini, J. ASTM Int. 9, 104293 (2012).

    Article  Google Scholar 

  34. E. Fodran and K. Walker, Benet Internal Technical Report: Surface Finish Enhancement for the Electron Beam Direct Digital Manufacturing of Ti-6Al-4V Alloy Structural Components (Watervliet, NY, 2015).

  35. S.R. Daniewicz and N. Shamsaei, Int. J. Fatigue 94, 167 (2017).

    Article  Google Scholar 

  36. Y. Xue, A. Pascu, M.F. Horstemeyer, L. Wang, and P.T. Wang, Acta Mater. 58, 4029 (2010).

    Article  Google Scholar 

  37. B. Torries, A.J. Sterling, N. Shamsaei, S.M. Thompson, and S.R. Daniewicz, Rapid Prototyp. J. 22, 817 (2016).

    Article  Google Scholar 

  38. M. Seifi, A. Salem, D. Satko, J. Shaffer, and J.J. Lewandowski, Int. J. Fatigue 94, 263 (2017).

    Article  Google Scholar 

  39. H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Addit. Manuf. 10, 47 (2016).

    Article  Google Scholar 

  40. P. Edwards, A. O’Conner, and M. Ramulu, J. Manuf. Sci. Eng. 135, 61016 (2013).

    Article  Google Scholar 

  41. D. Greitemeier, C. Dalle Donne, A. Schoberth, M. Jürgens, J. Eufinger, and T. Melz, Appl. Mech. Mater. 807, 169 (2015).

    Article  Google Scholar 

  42. H. Gong, K. Rafi, T. Starr, and B. Stucker, in Solid Freeform Fabrication Proceedings (Austin, TX, 2012), pp. 499–506.

  43. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, Int. J. Fatigue 48, 300 (2013).

    Article  Google Scholar 

  44. A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf, Eng. Fract. Mech. 120, 15 (2014).

    Article  Google Scholar 

  45. A.W. Prabhu, A. Chaudhary, W. Zhang, and S.S. Babu, Sci. Technol. Weld. Join. 20, 659 (2015).

    Article  Google Scholar 

  46. X. Shui, K. Yamanaka, M. Mori, Y. Nagata, K. Kurita, and A. Chiba, Mater. Sci. Eng. A 680, 239 (2017).

    Article  Google Scholar 

  47. P.A. Kobryn and S.L. Semiatin, in Solid Freeform Fabrication Proceedings (Austin, TX, 2001), pp. 179–186.

  48. A. Yadollahi, N. Shamsaei, M.S. Thompson, A. Elwany, and L. Bian, Int. J. Fatigue 94, 218 (2016).

    Article  Google Scholar 

  49. P. Edwards and M. Ramulu, Mater. Sci. Eng. A 598, 327 (2014).

    Article  Google Scholar 

  50. P. Edwards and M. Ramulu, Fatigue Fract. Eng. Mater. Struct. 38, 1228 (2015).

    Article  Google Scholar 

  51. N. Hrabe and T. Quinn, Mater. Sci. Eng. A 573, 271 (2013).

    Article  Google Scholar 

  52. R. Shrestha, N. Simsiriwong, N. Shamsaei, N. Thompson, and L. Bian, in Solid Freeform Fabrication Proceedings (Austin, TX, 2016), pp. 606–616.

  53. S. Siddique, M. Imran, M. Rauer, M. Kaloudis, E. Wycisk, C. Emmelmann, and F. Walther, Mater. Des. 83, 661 (2015).

    Google Scholar 

  54. H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, and J. Wang, JOM 67, 555 (2015).

    Article  Google Scholar 

  55. M. Seifi, I. Ghamarian, P. Samimi, P.C. Collins, and J.J. Lewandowski, in Proceedings of 13th World Conference Titanium, ed. by V. Venkatesh, A. Pilchak, J. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. Fraser, A. Imam, Y. Kosaka, H. Rack, A. Chatterjee, and A. Woodfield (TMS (The Minerals, Metals & Materials Society)/Wiley, San Diego, 2016), pp. 1317–1322.

  56. M. Seifi, A. Salem, D. Satko, U. Ackelid, S.L. Semiatin, and J.J. Lewandowski, Work in Progress (2017).

  57. M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, and M. Takeyama, Addit. Manuf. 13, 61 (2017).

    Article  Google Scholar 

  58. S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, Metall. Mater. Trans. A 47, 1939 (2016).

    Article  Google Scholar 

  59. A. du Plessis, S.G. le Roux, J. Els, G. Booysen, and D.C. Blaine, Case Stud. Nondestruct. Test. Eval. 4, 1 (2015).

    Article  Google Scholar 

  60. S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, Scr. Mater. 122, 72 (2016).

    Article  Google Scholar 

  61. A.B. Spierings, T.L. Starr, and I. Ag, Rapid Prototyp. J. 19, 88 (2013).

    Article  Google Scholar 

  62. H.A. Stoffregen, K. Butterweck, and E. Abele, in Solid Freeform Fabrication Proceedings (Austin, TX, 2014), pp. 635–650.

  63. E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann, Phys. Procedia 56, 371 (2014).

    Article  Google Scholar 

  64. D. Greitemeier, C. Dalle Donne, F. Syassen, J. Eufinger, and T. Melz, Mater. Sci. Technol. 32(7), 629 (2015).

    Article  Google Scholar 

  65. M. Qian, W. Xu, M. Brandt, and H.P. Tang, MRS Bull. 41, 775 (2016).

    Article  Google Scholar 

  66. A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A 644, 171 (2015).

    Article  Google Scholar 

  67. M. Mahmoudi, A. Elwany, A. Yadollahi, S. Thompson, L. Bian, and N. Shamsaei, Rapid Prototyp. J. Accepted (2017).

  68. J.S. Keist and T.A. Palmer, Mater. Des. 106, 482 (2016).

    Google Scholar 

  69. B. Torries, S. Shao, N. Shamsaei, and S. Thompson, in Solid Freeform Fabrication Proceedings (Austin, TX, 2016), p. 1272.

  70. J. Slotwinski and S. Moylan, Applicability of Existing Materials Testing Standards for Additive Manufacturing Materials, NIST IR 8005 (NIST, Gaithersburg, MD, 2014).

  71. A. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A 655, 100 (2016).

    Article  Google Scholar 

  72. Energetics Incorporated, Measurement Science Roadmap for Metal-Based Additive Manufacturing. Workshop Summary Report (NIST, Gaithersburg, MD, 2013).

  73. M.D. Monzón, Z. Ortega, A. Martínez, and F. Ortega, Int. J. Adv. Manuf. Technol. 76, 1111 (2014).

    Article  Google Scholar 

  74. Y. Kok, X. Tan, S. Tor, and C.K. Chua, Virtual Phys. Prototyp. 10, 13 (2015).

    Article  Google Scholar 

  75. S.L. Lu, H.P. Tang, Y.P. Ning, N. Liu, D.H. StJohn, and M. Qian, Metall. Mater. Trans. A 46, 3824 (2015).

    Article  Google Scholar 

  76. ASTM/ISO JG61, Standard Guide for Orientation and Location Dependence Mechanical Properties for Metal Additive Manufacturing (ASTM International, West Conshohocken, PA, 2017). Work in Progress.

  77. M. Seifi, D. Christiansen, J.L. Beuth, O. Harrysson, and J.J. Lewandowski, in Proceedings of 13th World Conference Titanium, ed. by V. Venkatesh, A. Pilchak, J. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. Fraser, A. Imam, Y. Kosaka, H. Rack, A. Chatterjee, and A. Woodfield (TMS (The Minerals, Metals & Materials Society)/Wiley, San Diego, 2016), pp. 1373–1377.

  78. M. Seifi, H. Villarraga-Gómez, F. Kim, E.J. Garboczi, S. Moylan, and J.J. Lewandowski, Work in Progress (2017).

  79. J.A. Slotwinski and E.J. Garboczi, JOM 67, 538 (2015).

    Article  Google Scholar 

  80. ASTM WK47031, Standard Guide for Post-Process Nondestructive Testing of Metal Additively Manufactured Parts Used in Aerospace Applications (West Conshohocken, PA, 2017). Work in Progress.

  81. ASTM WK56649, Standard Practice/Guide for Intentionally Seeding Flaws in Additively Manufactured (AM) Parts (West Conshohocken, PA, 2017). Work in Progress.

  82. R.B. Bergmann, F.T. Bessler, and W. Bauer, in Proceedings of ECNDT 2006 Conference (2006), pp. 1–10.

  83. E. Maire and P.J. Withers, Int. Mater. Rev. 59, 1 (2013).

    Article  Google Scholar 

  84. A. Thompson, I. Maskery, and R.K. Leach, Meas. Sci. Technol. 27, 1 (2016).

    Article  Google Scholar 

  85. H. Villarraga-gómez, M. Seifi, Y. Uchiyama, A. Ramsey, and J.J. Lewandowski, in ASPE/euspen Summer Topical Meeting Dimensional Accuracy Surface Finish Additive Manufacturing (Raliegh, 2016), pp. 151–155.

  86. K. Heim, F. Bernier, R. Pelletier, and L.P. Lefebvre, Case Stud. Nondestruct. Test. Eval. 6, 45 (2016).

    Article  Google Scholar 

  87. J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit, J. Res. Natl. Inst. Stand. Technol. 119, 494 (2014).

    Article  Google Scholar 

  88. L. Koester, H. Taheri, L.J. Bond, D. Barnard, and J. Gray, in 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation, vol. 1706 (2016), p. 130001.

  89. Concept Laser’s QMmeltpool 3D: In-situ quality assurance with real-time monitoring down to the micron level, vol. 1, no. 2 (Innovar Communications Ltd, 2015), pp. 69–71.

  90. E. Schwalbach, M. Groeber, R. Dehoff, V. Paquit, N. Schehl, W. Porter, W. Buchanan, and R. John, Multimodal Correlated Datasets to Understand Location Specific Processing State in Metals Additive Manufacturing (TMS (The Minerals, Metals & Materials Society)/Nashvile, TN, 2016).

  91. O. Brunke, E. Neuser, and A. Suppes, Int. Symp. Digit. Ind. Radiol. Comput. Tomogr. 20, 1 (2011).

    Google Scholar 

  92. R. Cunningham, S.P. Narra, T. Ozturk, J. Beuth, and A.D. Rollett, JOM 68, 765 (2016).

    Article  Google Scholar 

  93. E. Neuser and A. Suppes, in International Symposium on Digital Industrial Radiology and Computed Tomography (Lyon, 2007).

  94. America Makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), Public Draft (2017).

  95. NASA-STD-5009, Nondestructive Evaluation Requirements For Fracture Critical Metallic Components, NASA Technical standards system (NASA Technical Standard, Washington, DC 20546, 2008).

  96. J.M. Waller, B.H. Parker, K.L. Hodges, E.R. Burke, J.L. Walker, and E.R. Generazio, NASA Technical Memorandum- NASA/TM2014218560-Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report Prepared for (Hampton, 2014).

  97. M. Schwalbe, ed., Predictive Theoretical and Computational Approaches for Additive Manufacturing: Proceedings of a Workshop (Washington, DC, 2016). doi:10.17226/23646.

  98. H.C. Ward and J.A. Warren, Materials Genome Initiative: Materials Data, NISTIR 8038 (Gaithersburg, MD, 2015).

  99. D.L. McDowell and R.A. LeSar, MRS Bull. 41, 587 (2016).

    Article  Google Scholar 

  100. L. Bian, S.M. Thompson, and N. Shamsaei, JOM 67(3), 629 (2015).

    Article  Google Scholar 

  101. ISO/ASTM 52900, in ASTM Book of Standard (ASTM International, West Conshohocken, 2015), pp. 1–9.

Download references

Acknowledgements

The authors wish to thank Ben Dutton of the Manufacturing Technology Centre, members of ISO Technical Committee 261 JG59, and Steve James of Aerojet Rocketdyne for their work on developing an AM defects catalog (Table I). The authors also wish to thank James McCabe of ANSI for his efforts to solicit inputs from AM, design, materials, NDT, and quality assurance experts to identify existing standards and standards in development, to assess current technology gaps related to standards, and to make recommendations for priority areas where there is a perceived need for additional standardization as described in Ref. 94.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Seifi.

Additional information

This paper includes official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1 (AVI 108395 kb)

Supplementary Figure 2 (AVI 227549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifi, M., Gorelik, M., Waller, J. et al. Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification. JOM 69, 439–455 (2017). https://doi.org/10.1007/s11837-017-2265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2265-2

Keywords

Navigation