Skip to main content
Log in

Microstructure and Texture Evolution During the Alternate Extrusion of an AZ31 Magnesium Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, a new extrusion process, alternate extrusion (AE), is proposed. We evaluated the reliability and superiority of this process in practical applications by conducting a simulation using the finite element method, which confirmed the experimental results. The microstructure characteristics of an AZ31 magnesium alloy produced by conventional extrusion (CE) and AE were investigated by electron backscattered diffraction and optical microscopy, and the effects of the microstructures on the mechanical properties were studied across the extruded specimens. The main advantage of AE is that the load is reduced to less than half that in the CE process; this results from the reduced cross-section of the split punches. Additionally, the grain size with AE is more refined than with CE because of the additional shear force, which improves the mechanical properties of the alloys. Furthermore, AE can also weaken the intensity of the basal plane texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.M. Pollock, Science 328, 986 (2010).

    Article  Google Scholar 

  2. F.H. Froes, D. Eliezer, and E. Aghion, JOM 50(9), 30 (1998).

    Article  Google Scholar 

  3. G.K. Meenashisundaram and M. Gupta, JOM 68(7), 1890 (2016).

    Article  Google Scholar 

  4. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs, JOM 60(11), 57 (2008).

    Article  Google Scholar 

  5. Q. Chen, Z.X. Zhao, D.Y. Shu, D.Y. Shu, and Z.D. Zhao, Mater. Sci. Eng. A 528, 3930 (2011).

    Article  Google Scholar 

  6. Q.S. Yang, B. Jiang, Y. Tian, W.J. Liu, and F.S. Pan, Mater. Lett. 100, 29 (2013).

    Article  Google Scholar 

  7. F. Li, G.N. Chu, E.L. Liu, R.Z. Wu, and X.L. Zhang, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 2927 (2011).

    Article  Google Scholar 

  8. J. Stráská, M. Janeček, J. Čížek, J. Stráský, and B. Hadzima, Mater. Charact. 94, 69 (2014).

    Article  Google Scholar 

  9. Z.X. Kang, L.L. Zhou, and J.Y. Zhang, Mater. Sci. Eng. A 633, 59 (2015).

    Article  Google Scholar 

  10. E. Dogan, M.W. Vaughan, S.J. Wang, I. Karaman, and G. Proust, Acta Mater. 89, 408 (2015).

    Article  Google Scholar 

  11. Y.J. Chen, Q.D. Wang, H.J. Roven, M.P. Liu, M. Karlsen, Y.D. Yu, and J. Hjelen, Scr. Mater. 58, 311 (2008).

    Article  Google Scholar 

  12. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Naderi, and Ali.A. Roostaei, J. Alloys Compd. 507, 207 (2010).

    Article  Google Scholar 

  13. S.H. Kim, B.S. You, C.D. Yim, and Y.M. Seo, Mater. Lett. 59, 3876 (2005).

    Article  Google Scholar 

  14. K. Xia, J.T. Wang, X. Wu, G. Chen, and M. Gurvan, Mater. Sci. Eng. A 410–411, 324 (2005).

    Article  Google Scholar 

  15. Q.D. Wang, Y.J. Chen, J.B. Lin, L.J. Zhang, and C.Q. Zhai, Mater. Lett. 61, 4599 (2007).

    Article  Google Scholar 

  16. S.M. Fatemi-Varzaneh and A. Zarei-Hanzaki, Mater. Sci. Eng. A 528, 1334 (2011).

    Article  Google Scholar 

  17. V. Shatermashhadi, B. Manafi, K. Abrinia, G. Faraji, and M. Sanei, Mater. Des. 62, 361 (2014).

    Article  Google Scholar 

  18. P. Asadi, M.K.B. Givi, and M. Akbari, Int. J. Adv. Manuf. Technol. 83, 301 (2016).

    Article  Google Scholar 

  19. F. Li, N. Bian, and Y.C. Xu, Kovove Mater. 53, 59 (2015).

    Google Scholar 

  20. D.H. Shin, I. Kim, J. Kim, and Y.T. Zhu, Mater. Sci. Eng. A 334, 239 (2002).

    Article  Google Scholar 

  21. P.S. Roodposhti, A. Sarkar, and K.L. Murty, Mater. Sci. Eng. A 626, 195 (2015).

    Article  Google Scholar 

  22. T. Al-Samman, X. Li, and S.G. Chowdhury, Mater. Sci. Eng. A 527, 3450 (2010).

    Article  Google Scholar 

  23. J.A.D. Valle, M.T. Pérez-Prado, and O.A. Ruano, Mater. Sci. Eng. A 355, 68 (2003).

    Article  Google Scholar 

  24. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, Acta Mater. 55, 2101 (2007).

    Article  Google Scholar 

  25. L.L. Chang, J.H. Cho, and S.B. Kang, J. Mater. Process. Technol. 1527, 211 (2011).

    Google Scholar 

  26. W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu, and H. Zhou, Mater. Sci. Eng. A 540, 115 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This paper was financial project supported by National Natural Science Foundation of China (51205094) and Science Funds for the Young Innovative Talents of HUST, No. 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Jiang, H.W. & Liu, Y. Microstructure and Texture Evolution During the Alternate Extrusion of an AZ31 Magnesium Alloy. JOM 69, 93–99 (2017). https://doi.org/10.1007/s11837-016-2146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2146-0

Keywords

Navigation