Skip to main content
Log in

Effect of Intercritical Annealing Temperature on Martensite and Bainite Start Temperatures After Partial Austenitization

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructure evolution of dual-phase steel during partial austenitization was investigated for different intercritical annealing temperatures between Ac1 and Ac3 temperatures. Partial austenitization may result in different austenite volume fraction, chemical composition, and grain size of austenite depending on the intercritical annealing temperature. This study examines the effect of intercritical annealing temperature on M s and B s temperatures for dual-phase steels. M s and B s were measured experimentally for different intercritical annealing temperatures by using dilatometry and were compared with calculated values from empirical formulas. The grain sizes of the final microstructures were also quantitatively analyzed. It was shown that M s depends on the intercritical annealing temperature and austenite grain size. It was concluded that this double effect is attributed to the intercritical annealing temperature, which is responsible for both austenite chemical composition and grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.K. Matlock, J.G. Speer, E. De Moor, and P.J. Gibbs, Jestech 15, 1 (2012).

    Google Scholar 

  2. S. Oliver, T.B. Jones, and G. Fourlaris, Mater. Charact. 58, 390 (2007).

    Article  Google Scholar 

  3. B. Demir and M. Erdogan, J. Mater. Process. Technol. 208, 75 (2008).

    Article  Google Scholar 

  4. E. Girault, P. Jacques, P. Ratchev, J. Van Humbeeck, B. Verlinden, and E. Aernoudt, Mater. Sci. Eng. A 273–275, 471 (1999).

    Article  Google Scholar 

  5. V.B. Dutta, S. Suresh, and R.O. Ritchie, Metal. Trans. 15, 1193 (1984).

    Article  Google Scholar 

  6. E. Ahmad, T. Manzoor, M.M.A. Ziai, and N. Hussain, J. Mater. Eng. Perform. 21, 382 (2012).

    Article  Google Scholar 

  7. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor, Acta Mater. 56, 16 (2008).

    Article  Google Scholar 

  8. C. Zheng and D. Raabe, Acta Mater. 61, 5504 (2013).

    Article  Google Scholar 

  9. A. Bayram, A. Uğuz, and M. Ula, Mater. Charact. 43, 259 (1999).

    Article  Google Scholar 

  10. H.K.D.H. Bhadeshia, Bainite in Steels, 2nd ed. (London: IOM Comminications, 2001), pp. 1–16.

    Google Scholar 

  11. M. Suehiro, T. Senuma, H. Yada, Y. Matsumura, and T. Ariyoshi, Tetsu-to-Hagane (J. Iron Steel Inst. Jpn.) 73, 1026 (1987).

    Google Scholar 

  12. J.C. Zhao, Mater. Sci. Technol. 8, 997 (1992).

    Article  Google Scholar 

  13. M.V. Li, D.V. Niebuhr, L.L. Meekisho, and D.G. Atteridge, Metal. Mater. Trans. B 29, 661 (1998).

    Article  Google Scholar 

  14. T. Kunitake and Y. Okada, JISI 84, 137 (1998).

    Google Scholar 

  15. Y.K. Lee, J. Mater. Sci. Lett. 21, 1253 (2002).

    Article  Google Scholar 

  16. J.S. Kirkaldy and D. Venugopalan, Phase Transformations in Ferrous Alloys, ed. A.R. Marder and J.I. Goldstein (Warrendale: TMS-AIME, 1984), pp. 125–148.

    Google Scholar 

  17. W. Steven and A.G. Haynes, J. Iron Steel Inst. 183, 349 (1956).

    Google Scholar 

  18. Z. Zhao, C. Liu, Y. Liu, and D.O. Northwood, J. Mater. Sci. 36, 5045 (2001).

    Article  Google Scholar 

  19. R.L. Bodnar, T. Ohhashi, and R.I. Jaffee, Metal. Trans. A 20, 2196 (1989).

    Article  Google Scholar 

  20. P. Payson and H. Savage, Trans. ASM 33, 261 (1944).

    Google Scholar 

  21. E.S. Rowland and S.R. Lyle, Trans. ASM 37, 27 (1946).

    Google Scholar 

  22. R.A. Grange and H.M. Stewart, Trans. AIMME 167, 467 (1946).

    Google Scholar 

  23. A.E. Nehrenberg, Trans. AIME 167, 494 (1946).

    Google Scholar 

  24. W. Steven and A.G. Haynes, JISI 183, 349 (1956).

    Google Scholar 

  25. K.W. Andrews, JISI 203, 721 (1965).

    Google Scholar 

  26. S.J. Lee and K.S. Park, Metals Mater. Soc. ASM Int. 44, 3423 (2013).

    Google Scholar 

  27. P.J. Brofman and G.S. Ansell, Metal. Trans. A 14, 1929 (1983).

    Article  Google Scholar 

  28. A. García-Junceda, C. Capdevila, F.G. Caballero, and C. García de Andrés, Scr. Mater. 58, 134 (2008).

    Article  Google Scholar 

  29. S.J. Lee and Y.K. Lee, Mater. Sci. Forum 475–479, 3169 (2005).

    Article  Google Scholar 

  30. H.S. Yang and H.K.D.H. Bhadeshia, Scr. Mater. 60, 493 (2009).

    Article  Google Scholar 

  31. H.K.D.H. Bhadeshia, J. Phys. 4, 443 (1982).

    Google Scholar 

  32. ASTM 112-12, Standard test methods for determining average grain size (2013).

  33. S. Yang and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 23, 556 (2007).

    Article  Google Scholar 

  34. A. Borgenstam, A. Engstrom, L. Hoglund, and J. Ågren, J. Phase Equilib. 21, 269 (2000).

    Article  Google Scholar 

  35. Thermodynamic database TCFE6-TCS Steels/Fe-alloys database (v.6.2) for Thermo-Calc, Thermo-Calc Software AB. http://www.thermocalc.com. Accessed 07 Aug 2015.

  36. Thermo-calc software MOBFE2 steel and Fe-database version 2. http://www.thermocalc.com. Accessed 07 Aug 2015.

  37. N. Nakada, T. Tsuchiyama, S. Takaki, and N. Miyano, ISIJ Int. 51, 299 (2011).

    Article  Google Scholar 

  38. G.R. Speich, V.A. Demarest, and R.L. Miller, Am. Soc. Metals 12, 1419 (1981).

    Google Scholar 

  39. E. Erişir and O.G. Bilir, J. Mater. Eng. Perform. 23, 1055 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under research Project Number 212M008 and by the Kocaeli University Science Research Foundations under research project number 2014/026. The authors thank Yapı-Tek Çelik Sanayi A.Ş., Kocaeli, Turkey, for providing materials. They are also grateful to Dr. U. Prahl, RWTH Aachen, for access to a precision dilatometer and to Dr. M. Sezen, Sabancı University, Istanbul, Turkey, for access to a FEG-SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersoy Erişir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erişir, E., Bilir, O.G. Effect of Intercritical Annealing Temperature on Martensite and Bainite Start Temperatures After Partial Austenitization. JOM 68, 203–209 (2016). https://doi.org/10.1007/s11837-015-1673-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1673-4

Keywords

Navigation