Skip to main content
Log in

In Situ Mechanical Testing Techniques for Real-Time Materials Deformation Characterization

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In situ mechanical property testing has the ability to enhance quantitative characterization of materials by revealing the occurring deformation behavior in real time. This article will summarize select recent testing performed inside a scanning electron microscope on various materials including metals, ceramics, composites, coatings, and 3-Dimensional graphene foam. Tensile and indentation testing methods are outlined with case studies and preliminary data. The benefits of performing a novel double-torsion testing technique in situ are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Podor, J. Ravaux, and H.P. Brau, InTech, 2012, http://www.intechopen.com/books/scanning-electron-microscopy/insitu-experiments-in-the-scanning-electron-microscope-chamber. Accessed 2 Apr 2015.

  2. M. Legros, D.S. Gianola, and C. Motz, MRS Bull. 35, 354 (2010).

    Article  Google Scholar 

  3. M.A. Haque and M.T.A. Saif, Exp. Mech. 42, 123 (2002).

    Article  Google Scholar 

  4. S.W. Butler, J. Stefani, and I.E.E.E. Trans, Semicond. Manuf. 7, 193 (1994).

    Article  Google Scholar 

  5. A. Kammers and S. Daly, Exp. Mech. 53, 1743 (2013).

    Article  Google Scholar 

  6. J. Kang, M. Jain, D.S. Wilkinson, and J.D. Embury, J. Strain Anal. 40, 559 (2005).

    Article  Google Scholar 

  7. ASTM Standard E2309, Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines (West Conshohocken: ASTM International, 2011).

    Google Scholar 

  8. A. Nieto, B. Boesl, and A. Agarwal, Carbon 85, 299 (2015).

    Article  Google Scholar 

  9. B. Boesl, D. Lahiri, S. Behdad, and A. Agarwal, Carbon 69, 79 (2014).

    Article  Google Scholar 

  10. O. Lourie, D.M. Cox, and H.D. Wagner, Phys. Rev. Lett. 81, 1638 (1998).

    Article  Google Scholar 

  11. H.D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, Appl. Phys. Lett. 72, 188 (1998).

    Article  Google Scholar 

  12. T. Filleter, R. Bernal, S. Li, and H.D. Espinosa, Adv. Mater. 23, 2855 (2011).

    Article  Google Scholar 

  13. D. Qian, E.C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett. 76, 2868 (2000).

    Article  Google Scholar 

  14. F. Deng, T. Ogasawara, and N. Takeda, Compos. Sci. Technol. 67, 2959 (2007).

    Article  Google Scholar 

  15. B.P. Boesl, G.R. Bourne, and B.V. Sankar, Compos. B 42, 1157 (2011).

    Article  Google Scholar 

  16. Z. Xia, L. Riester, W. Curtin, H. Li, B. Sheldon, J. Liang, B. Chang, and J.M. Xu, Acta Mater. 52, 931 (2004).

    Article  Google Scholar 

  17. G. Yamamoto, K. Shirasu, T. Hashida, T. Takagi, J.W. Suk, J. An, R.D. Piner, and R.S. Ruoff, Carbon 49, 3709 (2011).

    Article  Google Scholar 

  18. S.B. Pitchuka, B. Boesl, C. Zhang, D. Lahiri, A. Nieto, G. Sundararajan, and A. Agarwal, Surf. Coat. Technol. 238, 118 (2014).

    Article  Google Scholar 

  19. Hysitron, http://www.hysitron.com/Default.aspx?tabid=109. Accessed 12 Apr 2015.

  20. Nanomechanics Inc., http://www.nanomechanicsinc.com/index.php/Products/insem-mechanical-properties-microprobe.html. Accessed 12 Apr 2015.

  21. D.P. Williams and A.G. Evans, ASTM J. Test. Eval. 1, 264 (1973).

    Article  Google Scholar 

  22. B.J. Pletka, E.R. Fuller Jr, and B.G. Koepke, ASTM STP 678, 19 (1979).

    Google Scholar 

  23. M.E. Ebrahimi, J. Chevalier, and G. Fantozzi, J. Mater. Res. 15, 142 (2000).

    Article  Google Scholar 

  24. A. Shyam and E. Lara-Curzio, J. Mater. Sci. 41, 4093 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Dr. Ali Sayir, Program Manager of Aerospace Materials for Extreme Environments at the Air Force Office of Scientific Research (FA9550-12-1-0263). In addition B.B. would like to acknowledge the support of Dr. William Nickerson, Program Manager of Sea-Based Aviation Structures and Materials at the Office of Naval Research (FA8650-13-C-5800). The authors also acknowledge the support of the Advanced Materials Engineering Research Institute (AMERI) at FIU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudolf, C., Boesl, B. & Agarwal, A. In Situ Mechanical Testing Techniques for Real-Time Materials Deformation Characterization. JOM 68, 136–142 (2016). https://doi.org/10.1007/s11837-015-1629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1629-8

Keywords

Navigation