JOM

, Volume 67, Issue 10, pp 2223–2235 | Cite as

Tensile Response of Two Nanoscale Bainite Composite-Like Structures

  • Lucia Morales-Rivas
  • Hung-Wei Yen
  • Bo-Ming Huang
  • Matthias Kuntz
  • Francisca G. Caballero
  • Jer-Ren Yang
  • Carlos Garcia-Mateo
Article

Abstract

The present work is concerned with the study of the relationship between microstructure and ductility of nanostructured bainite. The tensile behavior of two steels treated at the same temperature during different times has been analyzed. Special attention has been paid to the role that the retained austenite mechanical stability plays in enhancing the ductility through its contribution to the work-hardening and the damage resistance of these materials. The results have shown that the relative mechanical properties of the phases present affect both the martensitic transformation behavior and the total elongation.

References

  1. 1.
    C. Garcia-Mateo, T. Sourmail, F.G. Caballero, V. Smanio, M. Kuntz, C. Ziegler, A. Leiro, E. Vuorinen, R. Elvira, and T. Teeri, Mater. Sci. Technol. 30, 1071 (2014).CrossRefGoogle Scholar
  2. 2.
    C. Garcia-Mateo, F.G. Caballero, T. Sourmail, V. Smanio, and C. Garcia de Andres, Int. J. Mater. Res. 105, 725 (2014).CrossRefGoogle Scholar
  3. 3.
    C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira, Mater. Sci. Eng. A 549, 185 (2012).CrossRefGoogle Scholar
  4. 4.
    C. Garcia-Mateo and F.G. Caballero, Int. J. Mater. Res. 98, 137 (2007).CrossRefGoogle Scholar
  5. 5.
    C. Garcia-Mateo, F. Caballero, and H. Bhadeshia, ISIJ Int. 43, 1238 (2003).CrossRefGoogle Scholar
  6. 6.
    T. Sourmail, F.G. Caballero, C. Garcia-Mateo, V. Smanio, C. Ziegler, M. Kuntz, R. Elvira, A. Leiro, E. Vuorinen, and T. Teeri, Mater. Sci. Technol. 29, 1166 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Leiro, E. Vuorinen, K.G. Sundin, B. Prakash, T. Sourmail, V. Smanio, F.G. Caballero, C. Garcia-Mateo, and R. Elvira, Wear 298, 42 (2013).CrossRefGoogle Scholar
  8. 8.
    B. Avishan, C. Garcia-Mateo, S. Yazdani, and F.G. Caballero, Mater. Charact. 81, 105 (2013).CrossRefGoogle Scholar
  9. 9.
    B. Avishan, C. Garcia-Mateo, L. Morales-Rivas, S. Yazdani, and F.G. Caballero, J. Mater. Sci. 48, 6121 (2013).CrossRefGoogle Scholar
  10. 10.
    C. Garcia-Mateo, F.G. Caballero, and H. Bhadeshia, Mechanical Properties of Low-Temperature Bainite. Microalloying for New Steel Processes and Applications, Vol. 500–501 (Zurich-Uetikon: Trans Tech Publications Ltd, 2005), p. 495.Google Scholar
  11. 11.
    C. Garcia-Mateo and F.G. Caballero, Mater. Trans. JIM 46, 1839 (2005).CrossRefGoogle Scholar
  12. 12.
    C. Garcia-Mateo and F.G. Caballero, ISIJ Int. 45, 1736 (2005).CrossRefGoogle Scholar
  13. 13.
    K. Rakha, H. Beladi, I. Timokhina, X. Xiong, S. Kabra, K.-D. Liss, and P. Hodgson, Mater. Sci. Eng. A 589, 303 (2014).CrossRefGoogle Scholar
  14. 14.
    C. Garcia-Mateo, F.G. Caballero, and H. Bhadeshia, ISIJ Int. 43, 1821 (2003).CrossRefGoogle Scholar
  15. 15.
    S.K. Ghosh, N. Bhowmik, A. Haldar, and P.P. Chattopadhyay, Mater. Sci. Eng. A 527, 1082 (2010).CrossRefGoogle Scholar
  16. 16.
    H.K.D.H. Bhadeshia, Bainite in Steels: Theory and Practice (Philadelphia: Maney Publishing, 2015).Google Scholar
  17. 17.
    I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Metall. Mater. Trans. A 35A, 2331 (2004).CrossRefGoogle Scholar
  18. 18.
    R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert, Mater. Sci. Eng. A 447, 285 (2007).CrossRefGoogle Scholar
  19. 19.
    B. Kim, C. Celada, D. San Martín, T. Sourmail, and P.E.J. Rivera-Díaz-Del-Castillo, Acta Mater. 61, 6983 (2013).CrossRefGoogle Scholar
  20. 20.
    A. Barbacki, J. Mater. Process. Technol. 53, 57 (1995).CrossRefGoogle Scholar
  21. 21.
    Q.X. Dai, A.D. Wang, X.N. Cheng, and L. Cheng, Mater. Sci. Eng. A 311, 205 (2001).CrossRefGoogle Scholar
  22. 22.
    F.G. Caballero, C. Garcia-Mateo, J. Chao, M. Jesus Santofimia, C. Capdevila, and C. Garcia de Andres, ISIJ Int. 48, 1256 (2008).CrossRefGoogle Scholar
  23. 23.
    J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Mater. Sci. Eng. A 528, 4516 (2011).CrossRefGoogle Scholar
  24. 24.
    G. Ghosh and G.B. Olson, Acta Metall. Mater. 42, 3361 (1994).CrossRefGoogle Scholar
  25. 25.
    A. Saha Podder and H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 527, 2121 (2010).CrossRefGoogle Scholar
  26. 26.
    C. Garcia-Mateo, M. Peet, F. Caballero, and H. Bhadeshia, Mater. Sci. Technol. 20, 814 (2004).CrossRefGoogle Scholar
  27. 27.
    G.E. Dieter, Mechanical Metallurgy (New York: McGraw-Hill, 1976).Google Scholar
  28. 28.
    National Physical Laboratory, MTDATA (National Physical Laboratory: Teddington, 2003).Google Scholar
  29. 29.
    R.O. Rocha, T.M.F. Melo, E.V. Pereloma, and D.B. Santos, Mater. Sci. Eng. A 391, 296 (2005).CrossRefGoogle Scholar
  30. 30.
    C. Garcia-Mateo, J.A. Jimenez, H.W. Yen, M.K. Miller, L. Morales-Rivas, M. Kuntz, S.P. Ringer, J.R. Yang, and F.G. Caballero, Acta Mater. 91, 162 (2015).CrossRefGoogle Scholar
  31. 31.
    B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction (New York: Prentice Hall, 2001).Google Scholar
  32. 32.
    ASTM E975, Standard Practice for X-ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation (West Conshohocken: ASTM International, 2013).Google Scholar
  33. 33.
    M. Jarvinen, Textures Microstruct. 26–27, 93 (1996).CrossRefGoogle Scholar
  34. 34.
    D. Balzar and H. Ledbetter, J. Appl. Crystallogr. 26, 97 (1993).CrossRefGoogle Scholar
  35. 35.
    D.J. Dyson and B. Holmes, J. Iron Steel Inst. 208, 469 (1970).Google Scholar
  36. 36.
    H.K.D.H. Bhadeshia, Bainite in Steels (London: Institute of Materials, Maney Publishing, 2001).Google Scholar
  37. 37.
    C. Garcia-Mateo, F.G. Caballero, M.K. Miller, and J.A. Jimenez, J. Mater. Sci. 47, 1004 (2012).CrossRefGoogle Scholar
  38. 38.
    C.N. Hulme-Smith, M.J. Peet, I. Lonardelli, A.C. Dippel, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 31, 254 (2014).CrossRefGoogle Scholar
  39. 39.
    H.K.D.H. Bhadeshia, Philos. Mag. 93, 3714 (2013).CrossRefGoogle Scholar
  40. 40.
    M. Cohen, Trans. Metall. AIME 224, 638 (1962).Google Scholar
  41. 41.
    J.W. Christian, Mater. Trans. JIM 33, 208 (1992).CrossRefGoogle Scholar
  42. 42.
    S.S. Babu, S. Vogel, C. Garcia-Mateo, B. Clausen, L. Morales-Rivas, and F.G. Caballero, Scripta Mater. 69, 777 (2013).CrossRefGoogle Scholar
  43. 43.
    J. Cornide, G. Miyamoto, F.G. Caballero, T. Furuhara, M.K. Miller, and C. Garcia-Mateo, Sol. St. Phen. 172–174, 117 (2011).CrossRefGoogle Scholar
  44. 44.
    F.G. Caballero, H.-W. Yen, M.K. Miller, J.-R. Yang, J. Cornide, and C. Garcia-Mateo, Acta Mater. 59, 6117 (2011).CrossRefGoogle Scholar
  45. 45.
    S. Hoekstra, H.M.M. Van Der Lelie, and C.A. Verbraak, Acta Metall. 26, 1517 (1978).CrossRefGoogle Scholar
  46. 46.
    P.K. Ray, R.I. Ganguly, and A.K. Panda, Mater. Sci. Eng. A 346, 122 (2003).CrossRefGoogle Scholar
  47. 47.
    J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Mater. Sci. Eng. A 559, 486 (2011).Google Scholar
  48. 48.
    F.G. Caballero, M.K. Miller, S.S. Babu, and C. Garcia-Mateo, Acta Mater. 55, 381 (2007).CrossRefGoogle Scholar
  49. 49.
    H.J. Stone, M.J. Peet, H.K.D.H. Bhadeshia, P.J. Withers, S.S. Babu, and E.D. Specht, Proc. R. Soc. A 464, 1009 (2008).CrossRefGoogle Scholar
  50. 50.
    S.N. Prasad, A. Saxena, M.M.S. Sodhi, and P.N. Tripathi, Mater. Sci. Eng. A 476, 126 (2008).CrossRefGoogle Scholar
  51. 51.
    F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, and C. Garcia de Andres, Acta Mater. 57, 8 (2009).CrossRefGoogle Scholar
  52. 52.
    H.K.D.H. Bhadeshia, Mater. Sci. Technol. 31, 758 (2015).CrossRefGoogle Scholar
  53. 53.
    I. Stark, G.D.W. Smith, and H. Bhadeshia, Metall. Trans. A 21, 837 (1990).CrossRefGoogle Scholar
  54. 54.
    M. Peet, S.S. Babu, M.K. Miller, and H.K.D.H. Bhadeshia, Scripta Mater. 50, 1277 (2004).CrossRefGoogle Scholar
  55. 55.
    E.V. Pereloma, I.B. Timokhina, M.K. Miller, and P.D. Hodgson, Acta Mater. 55, 2587 (2007).CrossRefGoogle Scholar
  56. 56.
    F.G. Caballero, M.K. Miller, A.J. Clarke, and C. Garcia-Mateo, Scripta Mater. 63, 442 (2010).CrossRefGoogle Scholar
  57. 57.
    I.B. Timokhina, X.Y. Xiong, H. Beladi, S. Mukherjee, and P.D. Hodgson, Mater. Sci. Technol. 27, 739 (2011).CrossRefGoogle Scholar
  58. 58.
    C.H. Lee, H.K.D.H. Bhadeshia, and H.C. Lee, Mater. Sci. Eng. A 360, 249 (2003).CrossRefGoogle Scholar
  59. 59.
    S.A. Khan and H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 129, 257 (1990).CrossRefGoogle Scholar
  60. 60.
    P. Xu, B. Bai, F. Yin, H. Fang, and K. Nagai, Mater. Sci. Eng. A 385, 65 (2004).CrossRefGoogle Scholar
  61. 61.
    F.H. Samuel, D. Daniel, and O. Sudre, Mater. Sci. Eng. A 92, 43 (1987).CrossRefGoogle Scholar
  62. 62.
    A.H. Cottrell, J. Iron Steel Inst. 1, 93 (1945).Google Scholar
  63. 63.
    A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. 62A, 49 (1949).CrossRefGoogle Scholar
  64. 64.
    F.B. Pickering, Physical Metallurgy and the Design of Steels (Essex: Applied Science Publishers, 1978).Google Scholar
  65. 65.
    J.C. Hay, A. Bolshakov, and G.M. Pharr, J. Mater. Res. 14, 2296 (1999).CrossRefGoogle Scholar
  66. 66.
    C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, and H.K.D.H. Bhadeshia, Scripta Mater. 69, 409 (2013).CrossRefGoogle Scholar
  67. 67.
    M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, and D. Raabe, Acta Mater. 85, 216 (2015).CrossRefGoogle Scholar
  68. 68.
    P.J.B. Jacques, Curr. Opin. Solid State Mater. Sci. 8, 259 (2004).CrossRefGoogle Scholar
  69. 69.
    F. Alharbi, A.A. Gazder, A. Kostryzhev, B.C. De Cooman, and E.V. Pereloma, J. Mater. Sci. 49, 2960 (2014).CrossRefGoogle Scholar
  70. 70.
    S. Chatterjee and H. Bhadeshia, Mater. Sci. Technol. 22, 645 (2006).CrossRefGoogle Scholar
  71. 71.
    M. Borsutzki, R.G. Thiessen, I. Altpeter, G. Dobmann, G. Huebschen, R. Tschuncky, and K. Szielasko (Paper presented at the 18th European Conference on Fracture: Fracture of Materials and Structures from Micro to Macro Scale, 2010).Google Scholar
  72. 72.
    H. Kolsky, J. Sound Vib. 1, 88 (1964).CrossRefMATHGoogle Scholar
  73. 73.
    S. Papaefthymiou (Doktors der Ingenieurwissenschaften, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen University, 2005).Google Scholar
  74. 74.
    D.D. Knijf, Influence of Quenching and Partitioning Parameters on the Microstructure and Mechanical Properties of Advanced High Strength Steels (Gent: Universiteit Gent, 2015).Google Scholar
  75. 75.
    M.Y. Sherif, C.G. Mateo, T. Sourmail, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 20, 319 (2004).CrossRefGoogle Scholar
  76. 76.
    C. Garcia-Mateo and F.G. Caballero, Comprehensive Materials Processing, Vol. 1, ed. S. Hashmi, G.F. Batalha, C.J.V. Tyne, and B. Yilbas (Oxford: Elsevier Ltd, 2014), p. 165.CrossRefGoogle Scholar
  77. 77.
    T.-H. Lee, C.-S. Oh, and S.-J. Kim, Scripta Mater. 58, 110 (2008).CrossRefGoogle Scholar
  78. 78.
    T. Angel, J. Iron Steel Inst. 177, 165 (1954).Google Scholar
  79. 79.
    G.N. Haidemenopoulos and A.N. Vasilakos, Steel Res. Int. 67, 513 (1996).Google Scholar
  80. 80.
    C. Herrera, D. Ponge, and D. Raabe, Acta Mater. 59, 4653 (2011).CrossRefGoogle Scholar
  81. 81.
    S.K. Putatunda, C. Martis, and J. Boileau, Mater. Sci. Eng. A 528, 5053 (2011).CrossRefGoogle Scholar
  82. 82.
    T. Gnäupel-Herold, P.C. Brand, and H.J. Prask, Adv. X-ray Anal. 42, 464 (1998).Google Scholar
  83. 83.
    A. García-Junceda, C. Capdevila, F.G. Caballero, and C.G. de Andrés, Scripta Mater. 58, 134 (2008).CrossRefGoogle Scholar
  84. 84.
    H.-S. Yang and H.K.D.H. Bhadeshia, Scripta Mater. 60, 493 (2009).CrossRefGoogle Scholar
  85. 85.
    S.-J. Lee and K.-S. Park, Metall. Mater. Trans. A 44, 3423 (2013).CrossRefGoogle Scholar
  86. 86.
    G. Krauss and S.W. Thompson, ISIJ Int. 35, 937 (1995).CrossRefGoogle Scholar
  87. 87.
    G.N. Haidemenopoulos and A.N. Vasilakos, J. Alloys Compd. 247, 128 (1997).CrossRefGoogle Scholar
  88. 88.
    S. Chatterjee and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 23, 1101 (2007).CrossRefGoogle Scholar
  89. 89.
    J.R. Patel and M. Cohen, Acta Metall. 1, 531 (1953).CrossRefGoogle Scholar
  90. 90.
    G. Ghosh and G.B. Olson, Acta Metall. Mater. 42, 3371 (1994).CrossRefGoogle Scholar
  91. 91.
    H.S. Yang, D.W. Suh, and H.K.D.H. Bhadeshia, ISIJ Int. 52, 164 (2012).CrossRefGoogle Scholar
  92. 92.
    S. Chatterjee, H.S. Wang, J.R. Yang, and H. Bhadeshia, Mater. Sci. Technol. 22, 641 (2006).CrossRefGoogle Scholar
  93. 93.
    K. Tsuzaki, S.-I. Fukasaku, Y. Tomota, and T. Maki, Mater. Trans. JIM 32, 222 (1991).CrossRefGoogle Scholar
  94. 94.
    H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 273–275, 58 (1999).CrossRefGoogle Scholar
  95. 95.
    G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, and D.S. Wilkinson, Mater. Sci. Eng. A 516, 7 (2009).CrossRefGoogle Scholar
  96. 96.
    I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Metall. Mater. Trans. B 34A, 1599 (2003).CrossRefGoogle Scholar
  97. 97.
    F. Lani, Q. Furnemont, T. Van Rompaey, F. Delannay, P.J. Jacques, and T. Pardoen, Acta Mater. 55, 3695 (2007).CrossRefGoogle Scholar
  98. 98.
    H.K.D.H. Bhadeshia and S.R. Honeycombe, Steels, 3rd ed., ed. H.K.D.H. Bhadeshia and S.R. Honeycombe (Oxford: Butterworth-Heinemann, 2006), p. 307.CrossRefGoogle Scholar
  99. 99.
    J. Shi, S. Turteltaub, and E. Van der Giessen, J. Mech. Phys. Solids 58, 1863 (2010).CrossRefMATHGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Lucia Morales-Rivas
    • 1
  • Hung-Wei Yen
    • 2
  • Bo-Ming Huang
    • 2
  • Matthias Kuntz
    • 3
  • Francisca G. Caballero
    • 1
  • Jer-Ren Yang
    • 2
  • Carlos Garcia-Mateo
    • 1
  1. 1.Department of Physical MetallurgyNational Center for Metallurgical Research (CENIM-CSIC)MadridSpain
  2. 2.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.Robert Bosch GmbHMaterials and Process Engineering MetalsStuttgartGermany

Personalised recommendations