Skip to main content
Log in

Tensile Response of Two Nanoscale Bainite Composite-Like Structures

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The present work is concerned with the study of the relationship between microstructure and ductility of nanostructured bainite. The tensile behavior of two steels treated at the same temperature during different times has been analyzed. Special attention has been paid to the role that the retained austenite mechanical stability plays in enhancing the ductility through its contribution to the work-hardening and the damage resistance of these materials. The results have shown that the relative mechanical properties of the phases present affect both the martensitic transformation behavior and the total elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Garcia-Mateo, T. Sourmail, F.G. Caballero, V. Smanio, M. Kuntz, C. Ziegler, A. Leiro, E. Vuorinen, R. Elvira, and T. Teeri, Mater. Sci. Technol. 30, 1071 (2014).

    Article  Google Scholar 

  2. C. Garcia-Mateo, F.G. Caballero, T. Sourmail, V. Smanio, and C. Garcia de Andres, Int. J. Mater. Res. 105, 725 (2014).

    Article  Google Scholar 

  3. C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira, Mater. Sci. Eng. A 549, 185 (2012).

    Article  Google Scholar 

  4. C. Garcia-Mateo and F.G. Caballero, Int. J. Mater. Res. 98, 137 (2007).

    Article  Google Scholar 

  5. C. Garcia-Mateo, F. Caballero, and H. Bhadeshia, ISIJ Int. 43, 1238 (2003).

    Article  Google Scholar 

  6. T. Sourmail, F.G. Caballero, C. Garcia-Mateo, V. Smanio, C. Ziegler, M. Kuntz, R. Elvira, A. Leiro, E. Vuorinen, and T. Teeri, Mater. Sci. Technol. 29, 1166 (2013).

    Article  Google Scholar 

  7. A. Leiro, E. Vuorinen, K.G. Sundin, B. Prakash, T. Sourmail, V. Smanio, F.G. Caballero, C. Garcia-Mateo, and R. Elvira, Wear 298, 42 (2013).

    Article  Google Scholar 

  8. B. Avishan, C. Garcia-Mateo, S. Yazdani, and F.G. Caballero, Mater. Charact. 81, 105 (2013).

    Article  Google Scholar 

  9. B. Avishan, C. Garcia-Mateo, L. Morales-Rivas, S. Yazdani, and F.G. Caballero, J. Mater. Sci. 48, 6121 (2013).

    Article  Google Scholar 

  10. C. Garcia-Mateo, F.G. Caballero, and H. Bhadeshia, Mechanical Properties of Low-Temperature Bainite. Microalloying for New Steel Processes and Applications, Vol. 500–501 (Zurich-Uetikon: Trans Tech Publications Ltd, 2005), p. 495.

    Google Scholar 

  11. C. Garcia-Mateo and F.G. Caballero, Mater. Trans. JIM 46, 1839 (2005).

    Article  Google Scholar 

  12. C. Garcia-Mateo and F.G. Caballero, ISIJ Int. 45, 1736 (2005).

    Article  Google Scholar 

  13. K. Rakha, H. Beladi, I. Timokhina, X. Xiong, S. Kabra, K.-D. Liss, and P. Hodgson, Mater. Sci. Eng. A 589, 303 (2014).

    Article  Google Scholar 

  14. C. Garcia-Mateo, F.G. Caballero, and H. Bhadeshia, ISIJ Int. 43, 1821 (2003).

    Article  Google Scholar 

  15. S.K. Ghosh, N. Bhowmik, A. Haldar, and P.P. Chattopadhyay, Mater. Sci. Eng. A 527, 1082 (2010).

    Article  Google Scholar 

  16. H.K.D.H. Bhadeshia, Bainite in Steels: Theory and Practice (Philadelphia: Maney Publishing, 2015).

    Google Scholar 

  17. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Metall. Mater. Trans. A 35A, 2331 (2004).

    Article  Google Scholar 

  18. R. Petrov, L. Kestens, A. Wasilkowska, and Y. Houbaert, Mater. Sci. Eng. A 447, 285 (2007).

    Article  Google Scholar 

  19. B. Kim, C. Celada, D. San Martín, T. Sourmail, and P.E.J. Rivera-Díaz-Del-Castillo, Acta Mater. 61, 6983 (2013).

    Article  Google Scholar 

  20. A. Barbacki, J. Mater. Process. Technol. 53, 57 (1995).

    Article  Google Scholar 

  21. Q.X. Dai, A.D. Wang, X.N. Cheng, and L. Cheng, Mater. Sci. Eng. A 311, 205 (2001).

    Article  Google Scholar 

  22. F.G. Caballero, C. Garcia-Mateo, J. Chao, M. Jesus Santofimia, C. Capdevila, and C. Garcia de Andres, ISIJ Int. 48, 1256 (2008).

    Article  Google Scholar 

  23. J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Mater. Sci. Eng. A 528, 4516 (2011).

    Article  Google Scholar 

  24. G. Ghosh and G.B. Olson, Acta Metall. Mater. 42, 3361 (1994).

    Article  Google Scholar 

  25. A. Saha Podder and H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 527, 2121 (2010).

    Article  Google Scholar 

  26. C. Garcia-Mateo, M. Peet, F. Caballero, and H. Bhadeshia, Mater. Sci. Technol. 20, 814 (2004).

    Article  Google Scholar 

  27. G.E. Dieter, Mechanical Metallurgy (New York: McGraw-Hill, 1976).

    Google Scholar 

  28. National Physical Laboratory, MTDATA (National Physical Laboratory: Teddington, 2003).

    Google Scholar 

  29. R.O. Rocha, T.M.F. Melo, E.V. Pereloma, and D.B. Santos, Mater. Sci. Eng. A 391, 296 (2005).

    Article  Google Scholar 

  30. C. Garcia-Mateo, J.A. Jimenez, H.W. Yen, M.K. Miller, L. Morales-Rivas, M. Kuntz, S.P. Ringer, J.R. Yang, and F.G. Caballero, Acta Mater. 91, 162 (2015).

    Article  Google Scholar 

  31. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction (New York: Prentice Hall, 2001).

    Google Scholar 

  32. ASTM E975, Standard Practice for X-ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation (West Conshohocken: ASTM International, 2013).

    Google Scholar 

  33. M. Jarvinen, Textures Microstruct. 26–27, 93 (1996).

    Article  Google Scholar 

  34. D. Balzar and H. Ledbetter, J. Appl. Crystallogr. 26, 97 (1993).

    Article  Google Scholar 

  35. D.J. Dyson and B. Holmes, J. Iron Steel Inst. 208, 469 (1970).

    Google Scholar 

  36. H.K.D.H. Bhadeshia, Bainite in Steels (London: Institute of Materials, Maney Publishing, 2001).

    Google Scholar 

  37. C. Garcia-Mateo, F.G. Caballero, M.K. Miller, and J.A. Jimenez, J. Mater. Sci. 47, 1004 (2012).

    Article  Google Scholar 

  38. C.N. Hulme-Smith, M.J. Peet, I. Lonardelli, A.C. Dippel, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 31, 254 (2014).

    Article  Google Scholar 

  39. H.K.D.H. Bhadeshia, Philos. Mag. 93, 3714 (2013).

    Article  Google Scholar 

  40. M. Cohen, Trans. Metall. AIME 224, 638 (1962).

    Google Scholar 

  41. J.W. Christian, Mater. Trans. JIM 33, 208 (1992).

    Article  Google Scholar 

  42. S.S. Babu, S. Vogel, C. Garcia-Mateo, B. Clausen, L. Morales-Rivas, and F.G. Caballero, Scripta Mater. 69, 777 (2013).

    Article  Google Scholar 

  43. J. Cornide, G. Miyamoto, F.G. Caballero, T. Furuhara, M.K. Miller, and C. Garcia-Mateo, Sol. St. Phen. 172–174, 117 (2011).

    Article  Google Scholar 

  44. F.G. Caballero, H.-W. Yen, M.K. Miller, J.-R. Yang, J. Cornide, and C. Garcia-Mateo, Acta Mater. 59, 6117 (2011).

    Article  Google Scholar 

  45. S. Hoekstra, H.M.M. Van Der Lelie, and C.A. Verbraak, Acta Metall. 26, 1517 (1978).

    Article  Google Scholar 

  46. P.K. Ray, R.I. Ganguly, and A.K. Panda, Mater. Sci. Eng. A 346, 122 (2003).

    Article  Google Scholar 

  47. J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Mater. Sci. Eng. A 559, 486 (2011).

    Google Scholar 

  48. F.G. Caballero, M.K. Miller, S.S. Babu, and C. Garcia-Mateo, Acta Mater. 55, 381 (2007).

    Article  Google Scholar 

  49. H.J. Stone, M.J. Peet, H.K.D.H. Bhadeshia, P.J. Withers, S.S. Babu, and E.D. Specht, Proc. R. Soc. A 464, 1009 (2008).

    Article  Google Scholar 

  50. S.N. Prasad, A. Saxena, M.M.S. Sodhi, and P.N. Tripathi, Mater. Sci. Eng. A 476, 126 (2008).

    Article  Google Scholar 

  51. F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, and C. Garcia de Andres, Acta Mater. 57, 8 (2009).

    Article  Google Scholar 

  52. H.K.D.H. Bhadeshia, Mater. Sci. Technol. 31, 758 (2015).

    Article  Google Scholar 

  53. I. Stark, G.D.W. Smith, and H. Bhadeshia, Metall. Trans. A 21, 837 (1990).

    Article  Google Scholar 

  54. M. Peet, S.S. Babu, M.K. Miller, and H.K.D.H. Bhadeshia, Scripta Mater. 50, 1277 (2004).

    Article  Google Scholar 

  55. E.V. Pereloma, I.B. Timokhina, M.K. Miller, and P.D. Hodgson, Acta Mater. 55, 2587 (2007).

    Article  Google Scholar 

  56. F.G. Caballero, M.K. Miller, A.J. Clarke, and C. Garcia-Mateo, Scripta Mater. 63, 442 (2010).

    Article  Google Scholar 

  57. I.B. Timokhina, X.Y. Xiong, H. Beladi, S. Mukherjee, and P.D. Hodgson, Mater. Sci. Technol. 27, 739 (2011).

    Article  Google Scholar 

  58. C.H. Lee, H.K.D.H. Bhadeshia, and H.C. Lee, Mater. Sci. Eng. A 360, 249 (2003).

    Article  Google Scholar 

  59. S.A. Khan and H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 129, 257 (1990).

    Article  Google Scholar 

  60. P. Xu, B. Bai, F. Yin, H. Fang, and K. Nagai, Mater. Sci. Eng. A 385, 65 (2004).

    Article  Google Scholar 

  61. F.H. Samuel, D. Daniel, and O. Sudre, Mater. Sci. Eng. A 92, 43 (1987).

    Article  Google Scholar 

  62. A.H. Cottrell, J. Iron Steel Inst. 1, 93 (1945).

    Google Scholar 

  63. A.H. Cottrell and B.A. Bilby, Proc. Phys. Soc. 62A, 49 (1949).

    Article  Google Scholar 

  64. F.B. Pickering, Physical Metallurgy and the Design of Steels (Essex: Applied Science Publishers, 1978).

    Google Scholar 

  65. J.C. Hay, A. Bolshakov, and G.M. Pharr, J. Mater. Res. 14, 2296 (1999).

    Article  Google Scholar 

  66. C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, and H.K.D.H. Bhadeshia, Scripta Mater. 69, 409 (2013).

    Article  Google Scholar 

  67. M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, and D. Raabe, Acta Mater. 85, 216 (2015).

    Article  Google Scholar 

  68. P.J.B. Jacques, Curr. Opin. Solid State Mater. Sci. 8, 259 (2004).

    Article  Google Scholar 

  69. F. Alharbi, A.A. Gazder, A. Kostryzhev, B.C. De Cooman, and E.V. Pereloma, J. Mater. Sci. 49, 2960 (2014).

    Article  Google Scholar 

  70. S. Chatterjee and H. Bhadeshia, Mater. Sci. Technol. 22, 645 (2006).

    Article  Google Scholar 

  71. M. Borsutzki, R.G. Thiessen, I. Altpeter, G. Dobmann, G. Huebschen, R. Tschuncky, and K. Szielasko (Paper presented at the 18th European Conference on Fracture: Fracture of Materials and Structures from Micro to Macro Scale, 2010).

  72. H. Kolsky, J. Sound Vib. 1, 88 (1964).

    Article  MATH  Google Scholar 

  73. S. Papaefthymiou (Doktors der Ingenieurwissenschaften, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen University, 2005).

  74. D.D. Knijf, Influence of Quenching and Partitioning Parameters on the Microstructure and Mechanical Properties of Advanced High Strength Steels (Gent: Universiteit Gent, 2015).

    Google Scholar 

  75. M.Y. Sherif, C.G. Mateo, T. Sourmail, and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 20, 319 (2004).

    Article  Google Scholar 

  76. C. Garcia-Mateo and F.G. Caballero, Comprehensive Materials Processing, Vol. 1, ed. S. Hashmi, G.F. Batalha, C.J.V. Tyne, and B. Yilbas (Oxford: Elsevier Ltd, 2014), p. 165.

    Chapter  Google Scholar 

  77. T.-H. Lee, C.-S. Oh, and S.-J. Kim, Scripta Mater. 58, 110 (2008).

    Article  Google Scholar 

  78. T. Angel, J. Iron Steel Inst. 177, 165 (1954).

    Google Scholar 

  79. G.N. Haidemenopoulos and A.N. Vasilakos, Steel Res. Int. 67, 513 (1996).

    Google Scholar 

  80. C. Herrera, D. Ponge, and D. Raabe, Acta Mater. 59, 4653 (2011).

    Article  Google Scholar 

  81. S.K. Putatunda, C. Martis, and J. Boileau, Mater. Sci. Eng. A 528, 5053 (2011).

    Article  Google Scholar 

  82. T. Gnäupel-Herold, P.C. Brand, and H.J. Prask, Adv. X-ray Anal. 42, 464 (1998).

    Google Scholar 

  83. A. García-Junceda, C. Capdevila, F.G. Caballero, and C.G. de Andrés, Scripta Mater. 58, 134 (2008).

    Article  Google Scholar 

  84. H.-S. Yang and H.K.D.H. Bhadeshia, Scripta Mater. 60, 493 (2009).

    Article  Google Scholar 

  85. S.-J. Lee and K.-S. Park, Metall. Mater. Trans. A 44, 3423 (2013).

    Article  Google Scholar 

  86. G. Krauss and S.W. Thompson, ISIJ Int. 35, 937 (1995).

    Article  Google Scholar 

  87. G.N. Haidemenopoulos and A.N. Vasilakos, J. Alloys Compd. 247, 128 (1997).

    Article  Google Scholar 

  88. S. Chatterjee and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 23, 1101 (2007).

    Article  Google Scholar 

  89. J.R. Patel and M. Cohen, Acta Metall. 1, 531 (1953).

    Article  Google Scholar 

  90. G. Ghosh and G.B. Olson, Acta Metall. Mater. 42, 3371 (1994).

    Article  Google Scholar 

  91. H.S. Yang, D.W. Suh, and H.K.D.H. Bhadeshia, ISIJ Int. 52, 164 (2012).

    Article  Google Scholar 

  92. S. Chatterjee, H.S. Wang, J.R. Yang, and H. Bhadeshia, Mater. Sci. Technol. 22, 641 (2006).

    Article  Google Scholar 

  93. K. Tsuzaki, S.-I. Fukasaku, Y. Tomota, and T. Maki, Mater. Trans. JIM 32, 222 (1991).

    Article  Google Scholar 

  94. H.K.D.H. Bhadeshia, Mater. Sci. Eng. A 273–275, 58 (1999).

    Article  Google Scholar 

  95. G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, and D.S. Wilkinson, Mater. Sci. Eng. A 516, 7 (2009).

    Article  Google Scholar 

  96. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Metall. Mater. Trans. B 34A, 1599 (2003).

    Article  Google Scholar 

  97. F. Lani, Q. Furnemont, T. Van Rompaey, F. Delannay, P.J. Jacques, and T. Pardoen, Acta Mater. 55, 3695 (2007).

    Article  Google Scholar 

  98. H.K.D.H. Bhadeshia and S.R. Honeycombe, Steels, 3rd ed., ed. H.K.D.H. Bhadeshia and S.R. Honeycombe (Oxford: Butterworth-Heinemann, 2006), p. 307.

    Chapter  Google Scholar 

  99. J. Shi, S. Turteltaub, and E. Van der Giessen, J. Mech. Phys. Solids 58, 1863 (2010).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the European Research Fund for Coal and Steel, the Spanish Ministry of Economy and Competitiveness, and the Fondo Europeo de Desarrollo Regional (FEDER) for partially funding this research under Contracts RFSR-CT-2012-00017 and MAT2013-47460-C5-1-P, respectively. L.M.-R. also acknowledges this same Ministry and the National Science Council of Taiwan for financial support, the former as Ph.D. Research Grant (FPI: BES-2011-044186). The authors also express their gratitude to Jesús Chao for the fruitful discussion on fracture analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisca G. Caballero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Rivas, L., Yen, HW., Huang, BM. et al. Tensile Response of Two Nanoscale Bainite Composite-Like Structures. JOM 67, 2223–2235 (2015). https://doi.org/10.1007/s11837-015-1562-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1562-x

Keywords

Navigation