Skip to main content
Log in

Strengthening and mechanical stability mechanisms in nanostructured bainite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Understanding the main relationships between the microstructure parameters controlling the strength and ductility of low temperature bainitic microstructures is of considerable importance for further development of these grades. Although the microstructure essentially consists of solely two phases, bainitic ferrite and retained austenite, the complexity of the different microstructural characteristics, the natural consequence of its unique transformation mechanisms, might not provide with one unique answer, but a set of several parameters interdependent among them. This paper will deal with some of these relationships’ microstructure properties, strength, and ductility, with special emphasis in the mechanical stability (TRIP effect) of retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caballero FG, Santofimia MJ, Capdevila C, García-Mateo C, De García Andrés C (2006) Design of advanced bainitic steels by optimisation of TTT diagrams and T0 curves. ISIJ Int 46(10):1479

    Article  CAS  Google Scholar 

  2. Garcia-Mateo C, Caballero FG, Sourmail T, Kuntz M, Cornide J, Smanio V, Elvira R (2012) Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon. Mater Sci Eng A 549:185

    Article  CAS  Google Scholar 

  3. Garcia-Mateo C, Caballero FG, Bhadeshia HKDH (2003) Development of hard bainite. ISIJ Int 43(8):1238

    Article  CAS  Google Scholar 

  4. Garcia-Mateo C, Caballero FG (2007) Design of carbide-free low-temperature ultra high strength bainitic steels. Int J Mater Res 98(2):137

    CAS  Google Scholar 

  5. Garcia-Mateo C, Caballero FG, Sourmail T, Smanio V and Garcia de Andres C (2012) Composition Design of nanocrystalline bainitic steels by diffusionless solid reaction: theoretical calculations. Submitted to ISIJ Int for its evaluation

  6. Garcia-Mateo C, Caballero FG (2005) Ultra-high-strength bainitic steels. ISIJ Int 45(11):1736

    Article  CAS  Google Scholar 

  7. Garcia-Mateo C, Caballero FG (2005) The role of retained austenite on tensile properties of steels with bainitic microstructures. Mater Trans JIM 46(8):1839

    Article  CAS  Google Scholar 

  8. Caballero FG, García-Mateo C, Chao J, Santofimia MJ, Capdevila C, De Andrés CG (2008) Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic steels. ISIJ Int 48(9):1256

    Article  CAS  Google Scholar 

  9. Garcia-Mateo C, Caballero FG, Chao J, Capdevila C, Garcia De Andres C (2009) Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels. J Mater Sci 44(17):4617. doi:10.1007/s10853-009-3704-4

    Article  CAS  Google Scholar 

  10. Sandvik BPJ, Navalainen HP (1981) Structure-property relationships in commercial low-alloy bainitic-austenitic steel with high strength, ductility, and toughness. Met Technol 8(pt 6):213

    Article  CAS  Google Scholar 

  11. Bhadeshia HKDH (2001) Bainite in steels. transformations, microstructure and properties, 2nd edn. Institute of Materials, Minerals and Mining, London

    Google Scholar 

  12. Bhadeshia HKDH (1982) Thermodynamic analysis of isothermal transformation diagrams. Met Sci Heat Treat 16(3):159

    CAS  Google Scholar 

  13. Garcia-Mateo C, Caballero FG, Bhadeshia HKDH (2003) Acceleration of low-temperature bainite. ISIJ Int 43(11):1821

    Article  CAS  Google Scholar 

  14. de Andres CG, Bartolome MJ, Capdevila C, Martin DS, Caballero FG, Lopez V (2001) Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels. Mater Charact 46(5):389

    Article  Google Scholar 

  15. de Andres CG, Caballero FG, Capdevila C, San Martin D (2002) Revealing austenite grain boundaries by thermal etching: advantages and disadvantages. Mater Charact 49(2):121

    Article  Google Scholar 

  16. Dickson MJ (1969) Significance of texture parameters in phase analysis by X-ray diffraction. J Appl Crystallogr 2:176

    Article  CAS  Google Scholar 

  17. Dyson DJ, Holmes B (1970) Effect of alloying additions on lattice parameter of austenite. J Iron Steel Inst 208:469

    CAS  Google Scholar 

  18. Garcia-Mateo C, Caballero FG, Miller MK, Jimenez JA (2012) On measurement of carbon content in retained austenite in a nanostructured bainitic steel. J Mater Sci 47(2):1004. doi:10.1007/s10853-011-5880-2

    Article  CAS  Google Scholar 

  19. Williamson GK, Smallman RE (1956) III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos Mag 1(1):34

    Article  CAS  Google Scholar 

  20. MTDATA (2004) Phase diagram calculation software. National Physical Laboratory, Teddington

  21. Bhadeshia HKDH, Christian JW (1990) Bainite in steels. Metall Trans A 21 A(4):767

    Google Scholar 

  22. Furuhara T, Kawata H, Morito S, Maki T (2006) Crystallography of upper bainite in Fe–Ni–C alloys. Mater Sci Eng A 431(1–2):228

    Google Scholar 

  23. Bhadeshia HKDH, Edmonds DV (1979) The bainite transformation in a silicon steel. Metall Trans A 10(7):895

    Article  Google Scholar 

  24. Chang LC, Bhadeshia HKDH (1995) Metallographic observations of bainite transformation mechanism. Mater Sci Technol 11(2):105

    Article  CAS  Google Scholar 

  25. Caballero FG, Yen HW, Miller MK, Yang JR, Cornide J, Garcia-Mateo C (2011) Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels. Acta Mater 59(15):6117

    Article  CAS  Google Scholar 

  26. Singh SB, Bhadeshia HKDH (1998) Estimation of bainite plate-thickness in low-alloy steels. Mater Sci Eng A 245(1):72

    Article  Google Scholar 

  27. Cornide J, Garcia-Mateo C, Capdevila C, Caballero FG (2012) An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels. J Alloys Compd. doi:10.1016/j.jallcom.2011.11.066

  28. Bhadeshia HKDH, Edmonds DV (1983) Bainite in silicon steels: new composition-property approach. Part 1. Met Sci Heat Treat 17(9):411

    CAS  Google Scholar 

  29. Gladman T (1997) The physical metallurgy of microalloyed steels. Institute of Materials, London

    Google Scholar 

  30. Caballero FG, Miller MK, Babu SS, Garcia-Mateo C (2007) Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Mater 55(1):381

    Article  CAS  Google Scholar 

  31. Caballero FG, Garcia-Mateo C, Santofimia MJ, Miller MK, García de Andrés C (2009) New experimental evidence on the incomplete transformation phenomenon in steel. Acta Mater 57(1):8

    Article  CAS  Google Scholar 

  32. Bhadeshia HKDH, Waugh AR (1982) Bainite: an atom-probe study of the incomplete reaction phenomenon. Acta Metall 30(4):775

    Article  CAS  Google Scholar 

  33. Stone HJ, Peet MJ, Bhadeshia HKDH, Withers PJ, Babu SS, Specht ED (2008) Synchrotron X-ray studies of austenite and bainitic ferrite. Proc R Soc Lond Ser A 464(2092):1009

    Article  CAS  Google Scholar 

  34. Garcia-Mateo C, Caballero FG, Capdevila C, Andres CGd (2009) Estimation of dislocation density in bainitic microstructures using high-resolution dilatometry. Scr Mater 61(9):855

    Article  CAS  Google Scholar 

  35. Bhadeshia HKDH (1987) Bainite in Steels. Paper presented at the Phase transformations ‘87

  36. Peet M, Babu SS, Miller MK, Bhadeshia H (2004) Three-dimensional atom probe analysis of carbon distribution in low-temperature bainite. Scr Mater 50(10):1277

    Article  CAS  Google Scholar 

  37. Garcia-Mateo C, Peet M, Caballero FG, Bhadeshia HKDH (2004) Tempering of hard mixture of bainitic ferrite and austenite. Mater Sci Technol 20(7):814

    Article  CAS  Google Scholar 

  38. Caballero F, Miller M, Clarke A, Garcia-Mateo C (2010) Examination of carbon partitioning into austenite during tempering of bainite. Scr Mater 63(4):442

    Article  CAS  Google Scholar 

  39. Caballero FG, Miller MK, Garcia-Mateo C, Cornide J, Santofimia MJ (2012) Temperature dependence of carbon supersaturation of ferrite in bainitic steels. Scr Mater 67(10):846

    Article  Google Scholar 

  40. Caballero FG, Miller MK, Garcia-Mateo C, Cornide J (2012) New experimental evidence of the diffusionless transformation nature of bainite. J Alloys Compd. doi:10.1016/j.jallcom.2012.02.130

  41. Langford G, Cohen M (1969) Strain hardening of iron by severe plastic deformation. ASM-Trans 62:623

    CAS  Google Scholar 

  42. Langford G, Cohen M (1970) Calculation of cell-size strengthening of wire-drawn iron. Metall Mater Trans A 1(5):1478

    CAS  Google Scholar 

  43. Bhadeshia HKDH, Honeycombe RWK (2006) Steels: microstructure and properties. Butterworths-Heinemann (Elsevier), Amsterdam

    Google Scholar 

  44. Olofsson J, Larsson D, Svensson IL (2011) Effect of Austempering on Plastic Behavior of Some Austempered Ductile Iron Alloys. Metall Mater Trans A 42(13):3999

    Google Scholar 

  45. Yang J, Putatunda SK (2004) Influence of a novel two-step austempering process on the strain-hardening behavior of austempered ductile cast iron (ADI). Mater Sci Eng A 382(1–2):265

    Google Scholar 

  46. Lan HF, Liu XH, Du LX (2011) Ultra-hard bainitic steels processed through low temperature heat treatment. Adv Mater Res 156–157:1708

    Google Scholar 

  47. Sugimoto K, Kobayashi M, Hashimoto S (1992) Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metall Trans A 23 A(11):3085

    Google Scholar 

  48. Kirk D, Payne J (1999) Transformation induced in austenitic stainless steels by shot peening. Paper presented at the ICSP7: 7th International Conference on Shot Peening Warsaw (Poland), 29 Sept 1

  49. Nohara K, Ono Y, Ohashi N (1977) Composition and grain size dependence of strain induced martensitic transformation in metastable austenitic stainless steels. Tetsu To Hagane-J ISIJ 63(5):212

    Google Scholar 

  50. Sherif MY, Garcia-Mateo C, Sourmail T, Bhadeshia HKDH (2004) Stability of retained austenite in TRIP-assisted steels. Mater Sci Technol 20(3):319

    Article  CAS  Google Scholar 

  51. Sherif MY (2006) Characterisation and development of nanostructured, ultrahigh strength, and ductile bainitic steels. Ph.D., University of Cambridge. Available online at http://www.msm.cam.ac.uk/phase-trans/2000/phd.html

  52. Zackay VF, Parker ER, Fahr D, Busch R (1967) Enhancement of ductility in high-strength steels. ASM Trans 60(2):252

    CAS  Google Scholar 

  53. K-i Sugimoto, Misu M, Kobayashi M, Shirasawa H (1993) Effects of second phase morphology on retained austenite morphology and tensile properties in a TRIP- aided dual-phase steel sheet. ISIJ Int 33(7):775

    Article  Google Scholar 

  54. Seol J-B, Raabe D, Choi P-P, Im Y-R, Park C-G (2012) Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic–austenitic TRIP steels. Acta Mater 60(17):6183

    Article  CAS  Google Scholar 

  55. Wang J, Van der Zwaag S (2001) Stabilization mechanisms of retained austenite in transformation-induced plasticity steel. Metall Mater Trans A 32(6):1527

    Article  Google Scholar 

  56. Lanzillotto CAN, Pickering FB (1982) Structure property relationships in dual-phase steels. Met Sci Heat Treat 16(8):371

    CAS  Google Scholar 

  57. Balliger NK, Gladman T (1981) Work hardening of dual-phase steels. Met Sci Heat Treat 15(3):95

    CAS  Google Scholar 

  58. Lani F, Furnemont Q, Van Rompaey T, Delannay F, Jacques PJ, Pardoen T (2007) Multiscale mechanics of TRIP-assisted multiphase steels: II Micromechanical modelling. Acta Mater 55(11):3695

    Article  CAS  Google Scholar 

  59. Hase K, Garcia-Mateo C, Bhadeshia HKDH (2006) Bimodal size-distribution of bainite plates. Mater Sci Eng A 438–440:145

    Google Scholar 

  60. Bhadeshia HKDH (2010) Nanostructured bainite. Proc R Soc Lond Ser A 466(2113):3

    Article  CAS  Google Scholar 

  61. Nichol TJ, Judd G, Ansell GS (1977) The relationship between austenite strength and the transformation to martensite in Fe-10 pct Ni-0.6 pct C alloys. Metall Trans A 8(12):1877

    Article  Google Scholar 

  62. Breinan EM, Ansell GS (1970) The influence of austenite strength upon the austenite-martensite transformation in alloy steels. Metall Trans A 1(6):1513

    Article  CAS  Google Scholar 

  63. Ryu JH, Kim D-I, Kim HS, Bhadeshia HKDH, Suh D-W (2010) Strain partitioning and mechanical stability of retained austenite. Scr Mater 63(3):297

    Article  CAS  Google Scholar 

  64. Hojo T, Sugimoto KI, Mukai Y, Ikeda S (2008) Effects of aluminium on delayed fracture properties of ultra high strength low alloy TRIP-aided steels. ISIJ Int 48(6):824

    Article  CAS  Google Scholar 

  65. Jacques PJ, Ladrière J, Delannay F (2001) On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall Mater Trans A 32(11):2759

    Article  Google Scholar 

  66. Timokhina IB, Hodgson PD, Pereloma EV (2004) Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans A 35 A(8):2331

    Article  Google Scholar 

  67. Peet MJ (2001) Modelling the hot-deformation of austenite. M. Phil., University of Cambridge

  68. Zajac S, Komenda J, Morris P, Dierickx P, Matera S, Peñalba Diaz F (2005) Quantitative structure-property relationships for complex bainitic microstructures. Ref 7210-PR/247

Download references

Acknowledgements

The authors acknowledge E. Urones-Garrote from the Centro de Microscopia y Citometria (UCM) for assistance with the TEM. C. Garcia-Mateo and F.G. Caballero would like to thank the Spanish Ministry of Economy and Competitiveness Plan Nacional de I + D+I (2008-2011) for supporting their research under the auspices of the National Project MAT2010-15330. L. Morales-Rivas also acknowledges the same Ministry for financial support in the form of a PhD Research Grant (FPI). Behzad Avishan acknowledges the Iranian Science Ministry for the provision of a Grant for a short-term stay in CENIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Garcia-Mateo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avishan, B., Garcia-Mateo, C., Morales-Rivas, L. et al. Strengthening and mechanical stability mechanisms in nanostructured bainite. J Mater Sci 48, 6121–6132 (2013). https://doi.org/10.1007/s10853-013-7408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7408-4

Keywords

Navigation