Skip to main content
Log in

Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The microstructural evolution and consequent changes in strength and ductility of advanced NANOBAIN steel during prolonged isothermal heat-treatment stages were investigated. The microstructure and mechanical properties of nanostructured bainite were not expected to be influenced by extending the heat-treatment time beyond the optimum value because of the autotempering phenomenon and high tempering resistance. However, experimental results indicated that the microstructure was thermodynamically unstable and that prolonged austempering resulted in carbon depletion from high-carbon retained austenite and carbide precipitations. Therefore, austenite became thermally less stable and partially transformed into martensite during cooling to room temperature. Prolonged austempering did not lead to the typical tempering sequence of bainite, and the sizes of the microstructural constituents were independent of the extended heat-treatment times. This independence, in turn, resulted in almost constant ultimate tensile strength values. However, microstructural variations enhanced the yield strength and the hardness of the material at extended isothermal heat-treatment stages. Finally, although microstructural changes decreased the total elongation and impact toughness, considerable combinations of mechanical properties could still be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia and D.V. Edmonds, Bainite in silicon steels: new composition-property approach Part 1, Met. Sci., 17(1983), p. 411.

    Article  Google Scholar 

  2. H.K.D.H. Bhadeshia and D.V. Edmonds, Bainite in silicon steels: new composition-property approach Part 2, Met. Sci., 17(1983), p. 420.

    Article  Google Scholar 

  3. S. Khare, K. Lee, and H.K.D.H. Bhadeshia, Carbide-free bainite: compromise between rate of transformation and properties, Metall. Mater. Trans. A, 41(2010), No. 4, p. 922.

    Article  Google Scholar 

  4. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown, Very strong low temperature bainite, Mater. Sci. Technol., 18(2002), p. 279.

    Article  Google Scholar 

  5. F.G. Caballero and H.K.D.H. Bhadeshia, Very strong bainite, Curr. Opin. Solid State Mater. Sci., 8(2004), No. 3-4, p. 251.

    Article  Google Scholar 

  6. C. García Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Development of hard bainite, ISIJ Int., 43(2003), No. 8, p. 1238.

    Article  Google Scholar 

  7. M.N. Yoozbashi and S. Yazdani, Mechanical properties of nanostructured, low temperature bainitic steel designed using a thermodynamic model, Mater. Sci. Eng. A, 527(2010), No. 13-14, p. 3200.

    Google Scholar 

  8. M.N. Yoozbashi, S. Yazdani, and T.S. Wang, Design of a new nanostructured, high-Si bainitic steel with lower cost production, Mater. Des., 32(2011), No. 6, p. 3248.

    Google Scholar 

  9. C. Garcia-Mateo and F.G. Caballero, Design of carbide-free low-temperature ultra high strength bainitic steels, Int. J. Mater. Res., 98(2007), No. 2, p. 137.

    Article  Google Scholar 

  10. C. Garcia-Mateo and F.G. Caballero, Ultra-high-strength bainitic steels, ISIJ Int., 45(2005), No. 11, p. 1736.

    Article  Google Scholar 

  11. H.K.D.H. Bhadeshia, Nanostructured bainite, Proc. R. Soc. A, 466(2010), p. 3.

    Article  Google Scholar 

  12. F.G. Caballero, M.J. Santofimia, C. Capdevila, C. García-Mateo, and C. García de Andrés, Design of advanced bainitic steels by optimisation of TTT diagrams and T0 curves, ISIJ Int., 46(2006), No. 10, p. 1479.

    Article  Google Scholar 

  13. F.G. Caballero, M.J. Santofimia, C. García-Mateo, J. Chao, and C.G. de Andrés, Theoretical design and advanced microstructure in super high strength steels, Mater. Des., 30(2009), No. 6, p. 2077.

    Article  Google Scholar 

  14. C. Garcia-Mateo, F.G. Caballero, T. Sourmail, J. Cornide, V. Smanio, and R. Elvira, Composition design of nanocrystalline bainitic steels by diffusionless solid reaction, Met. Mater. Int., 3(2014), No. 3, p. 405.

    Article  Google Scholar 

  15. Y. Huang, A.M. Zhao, J.G. He, X.P. Wang, Z.G. Wang, and L. Qi, Microstructure, crystallography and nucleation mechanism of NANOBAIN steel, Int. J. Miner. Metall. Mater., 20(2013), No. 12, p. 1155.

    Article  Google Scholar 

  16. C. Garcia-Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira, Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon, Mater. Sci. Eng. A, 549(2012), p. 185.

    Article  Google Scholar 

  17. B. Avishan, S. Yazdani, F.G. Caballero, T.S. Wang, and C. Garcia-Mateo, Characterisation of microstructure and mechanical properties in two different nanostructured bainitic steels, J. Mater. Sci. Technol., 31(2015), No. 12, p. 1508.

    Article  Google Scholar 

  18. H.K.D.H. Bhadeshia, Bainite in Steels, 2nd Ed., Institute of Materials, London, 2001, p. 117.

    Google Scholar 

  19. F.G. Caballero, M.K. Miller, C. Garcia-Mateo, and J. Cornide, New experimental evidence of the diffusionless transformation nature of bainite, J. Alloys Compd., 577(2013), No. s1, p. 626.

    Article  Google Scholar 

  20. H. Bhadeshia and J. Christian, Bainite in steels, Metall. Trans. A, 21(1990), No. 3, p. 767.

    Article  Google Scholar 

  21. F.G. Caballero, M.K. Miller, and C. Garcia-Mateo, The approach to equilibrium during tempering of a bulk nanocrystalline steel: an atom probe investigation, J. Mater. Sci., 43(2008), No. 11, p. 3769.

    Article  Google Scholar 

  22. F.G. Caballero, M.K. Miller, S.S. Babu, and C. García-Mateo, Atomic scale observations of bainite transformation in a high carbon high silicon steel, Acta Mater., 55(2007), No. 1, p. 381.

    Article  Google Scholar 

  23. J. Cornide, G. Miyamoto, F.G. Caballero, T. Furuhara, M.K. Miller, and C. García-Mateo, Distribution of dislocations in nanostructured bainite, Solid State Phenom., 172-174(2011), p. 117.

    Article  Google Scholar 

  24. F.G. Caballero, H.W. Yen, M.K. Miller, J.R. Yang, J. Cornide, and C. Garcia-Mateo, Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels, Acta Mater., 59(2011), No. 15, p. 6117.

    Article  Google Scholar 

  25. H.K.D.H. Bhadeshia and A.R. Waugh, Bainite: An atom-probe study of the incomplete reaction phenomenon, Acta Metall., 30(1982), No. 4, p. 775.

    Article  Google Scholar 

  26. F.G. Caballero, C. Garcia-Mateo, M.J. Santofimia, M.K. Miller, and C. García de Andrés, New experimental evidence on the incomplete transformation phenomenon in steel, Acta Mater., 57(2009), No. 1, p. 8.

    Article  Google Scholar 

  27. M. Kabirmohammadi, B. Avishan, and S. Yazdani, transformation kinetics and microstructural features in low-temperature bainite after ausforming process, Mater. Chem. Phys., 184(2016), p. 306.

    Article  Google Scholar 

  28. H.K.D.H. Bhadeshia and D.V. Edmonds, The bainite transformation in a silicon steel, Metall. Trans. A, 10(1979), No. 7, p. 895.

    Article  Google Scholar 

  29. A. Saha Podder and H.K.D.H. Bhadeshia, Thermal stability of austenite retained in bainitic steels, Mater. Sci. Eng. A, 527(2010), No. 7-8, p. 2121.

    Article  Google Scholar 

  30. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown, Design of novel high strength bainitic steels: Part 2, Mater. Sci. Technol., 17(2001), No. 5, p. 517.

    Article  Google Scholar 

  31. H.S. Hasan, M.J. Peet, and H.K.D.H. Bhadeshia, Severe tempering of bainite generated at low transformation temperatures, Int. J. Mater. Res., 103(2012), No. 11, p. 1319.

    Article  Google Scholar 

  32. C. García-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Acceleration of low-temperature bainite, ISIJ Int., 43(2003), No. 11, p. 1821.

    Article  Google Scholar 

  33. B. Avishan, C. Garcia-Mateo, L. Morales-Rivas, S. Yazdani, and F.G. Caballero, Strengthening and mechanical stability mechanisms in nanostructured bainite, J. Mater. Sci., 48(2013), p. 6121.

    Article  Google Scholar 

  34. L.C. Chang and H.K.D.H. Bhadeshia, Austenite films in bainitic microstructures, Mater. Sci. Technol., 11(1995), p. 874.

    Article  Google Scholar 

  35. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd Ed., PrenticeHall, New York, 2001.

    Google Scholar 

  36. D.J. Dyson and B. Holmes, Effect of alloying additions on the lattice parameter of austenite, J. Iron Steel Inst., 208(1970), No. 5, p. 469.

    Google Scholar 

  37. H.W. King and E.A. Payzant, Error corrections for X-ray powder diffractometry, Can. Metall. Q., 40(2001), No. 3, p. 385.

    Article  Google Scholar 

  38. S.B. Singh and H.K.D.H. Bhadeshia, Estimation of bainite plate-thickness in low-alloy steels, Mater. Sci. Eng. A, 245(1998), No. 1, p. 72.

    Article  Google Scholar 

  39. F.G. Caballero, M.K. Miller, and C. Garcia-Mateo, Tracking solute atoms during bainite reaction in a nanocrystalline steel, Mater. Sci. Technol., 26(2010), No. 8, p. 889.

    Article  Google Scholar 

  40. B. Avishan, C. Garcia-Mateo, S. Yazdani, and F.G. Caballero, Retained austenite thermal stability in a nanostructured bainitic steel, Mater. Charact., 81(2013), p. 105.

    Article  Google Scholar 

  41. C. Garcia-Mateo, F.G. Caballero, M.K. Miller, and J.A. Jimenez, On measurement of carbon content in retained austenite in a nanostructured bainitic steel, J. Mater. Sci., 47(2012), No. 2, p. 1004.

    Article  Google Scholar 

  42. C. Garcia-Mateo, M. Peet, F.G. Caballero, and H.K.D.H. Bhadeshia, Tempering of hard mixture of bainitic ferrite and austenite, Mater. Sci. Technol., 20(2004), No. 7, p. 814.

    Article  Google Scholar 

  43. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Low temperature bainite, J. Phys. IV, 112(2003), p. 285.

    Google Scholar 

  44. C. Garcia-Mateo, F.G. Caballero, J. Chao, C. Capdevila, and C.G. de Andres, Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels, J. Mater. Sci., 44(2009), No. 17, p. 4617.

    Article  Google Scholar 

  45. A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano, and A. Charaï, Effect of the bainitic transformation temperature on retained austenite fraction and stability in Ti microalloyed TRIP steels, Mater. Sci. Eng. A, 518(2009), No. 1-2, p. 89.

    Article  Google Scholar 

  46. F.G. Caballero, J. Chao, J. Cornide, C. García-Mateo, M.J. Santofimia, and C. Capdevila, Toughness deterioration in advanced high strength bainitic steels, Mater. Sci. Eng. A, 525 (2009), p. 87.

    Article  Google Scholar 

  47. S. Golchin, B. Avishan, and S. Yazdani, Effect of 10% ausforming on impact toughness of nano bainite austempered at 300°C, Mater. Sci. Eng. A, 656 (2016), p. 94.

    Article  Google Scholar 

  48. B. Avishan, S. Yazdani and S.H. Nedjad, Toughness variations in nanostructured bainitic steels, Mater. Sci. Eng. A, 548(2012), p. 106.

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to Azarbaijan Shahid Madani University for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Avishan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avishan, B. Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel. Int J Miner Metall Mater 24, 1010–1020 (2017). https://doi.org/10.1007/s12613-017-1490-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1490-6

Keywords

Navigation