Skip to main content
Log in

Modelling and Design of Magnesium and High Entropy Alloys Through Combining Statistical and Physical Models

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Physical and statistical models are combined to describe and design magnesium and high entropy alloys. A principal component analysis is applied to merge material datasets, and it is shown that limits in properties can be envisaged. Extrapolation techniques can be employed to devise properties of non-existing alloys, such as specific heat capacity, melting point and Young’s modulus. These in turn can be input to physical models to predict, for example, yield strength and modulus of toughness. The tools described herein can readily be used for materials discovery, and are being implemented in the Accelerated Metallurgy project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Toda-Caraballo, Enrique.I. Galindo-Nava, and P.E.J. Rivera-Díaz del Castillo, J. Alloys Compd. 266, 217 (2013).

    Article  Google Scholar 

  2. Ian. Polmear, Light Alloys, From Traditional Alloys to Nanocrystals (Oxford: Elsevier Ltd., 2006).

    Google Scholar 

  3. I. Toda-Caraballo, Enrique.I. Galindo-Nava, and P.E.J. Rivera-Díaz del Castillo, Acta Mater. 75, 287 (2014).

    Article  Google Scholar 

  4. E.O. Hall, Proc. Phys. Soc. B 64, 747 (1951).

    Article  Google Scholar 

  5. N.J. Petch, J. Iron Steel Inst. 174, 25 (1953).

    Google Scholar 

  6. J.W. Yeh, Ann. Chim. 31, 633 (2006).

    Article  Google Scholar 

  7. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).

    Article  Google Scholar 

  8. S. Guo and C.T. Liu, Prog. Nat. Sci. 21, 433 (2011).

    Article  Google Scholar 

  9. M.F. Ashby, Philos. Mag. 21, 399 (1970).

    Article  Google Scholar 

  10. R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis (Upper Saddle River, NJ: Pearson Prentice Hall, 2007).

    MATH  Google Scholar 

  11. F. Kormann, A. Dick, B. Grabowski, B. Hallstedt, T. Hickel, and J. Neugebauer, Phys. Rev. B 11, 033102 (2008).

    Article  Google Scholar 

  12. B.J. Jesson and P.A. Madden, J. Chem. Phys 113, 5924 (2000).

    Article  Google Scholar 

  13. S. Ryu, C.R. Weinberger, M.I. Baskes, and W. Cai, Model. Simul. Mater. Sci. Eng. 17, 075008 (2009).

    Article  Google Scholar 

  14. B. Kocak, Y.O. Ciftci, K. Colakoglu, and E. Deligoz, Phys. B 407, 316 (2012).

    Article  Google Scholar 

  15. D. Holmgren, Int J. Cast. Met. Res. 18, 331 (2005).

    Article  Google Scholar 

  16. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering (Hoboken: Wiley, 2010).

    Google Scholar 

  17. R.K.K. Honeycombe and H.K.D.H. Bhadeshia, Steels, Microstructure and Properties (Oxford: Butterworth-Heinemann, 2003).

    Google Scholar 

  18. E.I. Galindo-Nava, J. Sietsma, and P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 60, 2615 (2012).

    Article  Google Scholar 

  19. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Mater. Sci. Eng. A 543, 110 (2012).

    Article  Google Scholar 

  20. M. Huang, P.E.J. Rivera-Díaz-del-Castillo, O. Bouaziz, and S. van der Zwaag, Mater. Sci. Technol. 25, 833 (2009).

    Article  Google Scholar 

  21. H.K.D.H. Bhadeshia, ISIJ Int. 39, 966 (1999).

    Article  Google Scholar 

  22. M.F. Ashby, Proc. R. Soc. A 454, 1301 (1998).

    Article  Google Scholar 

  23. G.E. Dieter, Mechanical Metallurgy (Singapore: McGraw-Hill Book Co, 2006).

    Google Scholar 

  24. M.Z. Butt, Czech J. Phys. 49, 1177 (1999).

    Article  Google Scholar 

  25. C.H. Caceres, G.E. Mann, and J.R. Griffiths, Metall. Mater. Trans. A 42A, 1950 (2011).

    Article  Google Scholar 

  26. N. Ono, R. Nowak, and S. Miura, Mater. Lett. 58, 39 (2004).

    Article  Google Scholar 

  27. D.V. Wilson and J.A. Chapman, Philos. Mag. 8, 1543 (1963).

    Article  Google Scholar 

  28. R. Labusch, Phys. Status Solid. 41, 659 (1970).

    Article  Google Scholar 

  29. R.L. Fleischer, Acta Metall. 11, 203 (1963).

    Article  Google Scholar 

  30. N.F. Mott and F.R.N. Nabarro. Physical Society Bristol Conference Report (1948), p. 1.

  31. U.F. Kocks, and A.S. Argon, et al., Thermodynamics and Kinetics of Slip. Progress in Materials Science (Oxford: Pergamon Press, 1975).

    Google Scholar 

  32. C.H. Caceres and D.M. Rovera, J. Light Met. 1, 151 (2001).

    Article  Google Scholar 

  33. L. Čižek, J. Mater. Sci. Metall. 9, 1517 (1974).

    Article  Google Scholar 

  34. A. Akhtar and E. Teghtsoonian, Philos. Mag. 25A, 897 (1972).

    Article  Google Scholar 

  35. V.A. Lubarda, Mech. Mater. 35, 53 (2003).

    Article  Google Scholar 

  36. W.B. Pearson, Handbook Oflattice Spacings and Structures of Metals and Alloys (London: Pergamon Press, 1958).

    Google Scholar 

  37. M.Z. Butt and P. Feltham, J. Mater. Sci. 28, 2557 (1993).

    Article  Google Scholar 

  38. M.Z. Butt and P. Feltham, J. Mater. Sci. Lett. 15, 253–254 (1980).

    Article  Google Scholar 

  39. M.Z. Butt, I.M. Ghauri, R. Qamar, K.M. Hashmi, and P. Feltham, Acta Metall. 29, 829 (1980).

    Article  Google Scholar 

  40. M.Z. Butt, K.M. Chaudhary, and P. Feltham, J. Mater. Sci. 18, 840 (1983).

    Article  Google Scholar 

  41. M.Z. Butt, P. Feltham, and I.M. Ghauri, J. Mater. Sci. 21, 2664 (1986).

    Article  Google Scholar 

  42. M.Z. Butt, Z. Rafi, and M.A. Chan, Phys. Status Solid. 120, 145 (1990).

    Article  Google Scholar 

  43. L.A. Gypen and A. Deruyttere, J. Mater. Sci. 12, 1028 (1977).

    Article  Google Scholar 

  44. L.A. Gypen and A. Deruyttere, J. Mater. Sci. 12, 1034 (1977).

    Article  Google Scholar 

  45. B.C. Peters and A.A. Hendrickson, Metall. Trans. 1, 2271 (1970).

    Article  Google Scholar 

  46. P. Lukáč and I. Stulíková, Cżechoslov. J. Phys. 24, 648 (1974).

    Article  Google Scholar 

  47. P. Lukáč, Phys. Status Solid. A 131, 337 (1992).

    Google Scholar 

  48. P. Jax, P. Kratochvil, and P. Haasen, Acta Metall. 18, 237 (1970).

    Article  Google Scholar 

  49. A. Akhtar and E. Teghtsoonian, Metall. Trans. 2, 2757 (1971).

    Article  Google Scholar 

  50. S. Miura, S. Imagawa, T. Toyoda, K. Ohkubo, and T. Mohri, Mater. Trans. 49, 952 (2008).

    Article  Google Scholar 

  51. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao, Acta Mater. 59, 4907 (2011).

    Article  Google Scholar 

  52. D.H. StJohn, M. Qian, A.M. Easton, P. Cao, and Z. Hildebrandd, Metall. Mater. Trans. A 36A, 1669 (2012).

    Google Scholar 

  53. Y.C. Lee, A.K. Dahle, and D.H. StJohn, Metall. Mater. Trans. A 31A, 2895 (2000).

    Article  Google Scholar 

  54. H. Men and Z. Fan, Acta Mater. 59, 2704 (2011).

    Article  Google Scholar 

  55. Z. Liu, F. Wang, D. Qiu, J.A. Taylor, and M. Zhang, Metall. Mater. Trans. A 44A, 4025 (2013).

    Article  Google Scholar 

  56. S.F. Liu, B. Li, X.H. Wang, W. Su, and H. Han, J. Mater. Process. Technol. 8, 3999 (2008).

    Google Scholar 

  57. J.P. Hirth, Metall. Trans. 3, 3047 (1972).

    Article  Google Scholar 

  58. A.W. Thompson and M.I. Baskes, Philos. Mag. 28, 301 (1973).

    Article  Google Scholar 

  59. M.A. Meyers and E. Ashworth, Philos. Mag. 46, 737 (1982).

    Article  Google Scholar 

  60. A.Y. Nakada and A.S. Keh, Metall. Trans. 2, 441 (1971).

    Article  Google Scholar 

  61. S. Nagarjuna, M. Srinivas, K. Balasubramanian, and D.S. Sarma, Acta Mater. 44, 2285 (1996).

    Article  Google Scholar 

  62. B. Mintz, W.D. Gunawardana, and H. Su, Mater. Sci. Technol. 24, 596 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support from the Accelerated Metallurgy Project, which is co-funded by the European Commission in the 7th Framework Programme (Contract NMP4-LA-2011-263206), by the European Space Agency and by the individual partner organisations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro E. J. Rivera-Díaz-del-Castillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toda-Caraballo, I., Rivera-Díaz-del-Castillo, P.E.J. Modelling and Design of Magnesium and High Entropy Alloys Through Combining Statistical and Physical Models. JOM 67, 108–117 (2015). https://doi.org/10.1007/s11837-014-1242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1242-2

Keywords

Navigation