Skip to main content

Design Magnesium Alloys: How Computational Thermodynamics Can Help

  • Chapter
Essential Readings in Magnesium Technology
  • 5097 Accesses

Abstract

Thermodynamics has often been viewed applicable to states near equilibrium only although irreversible thermodynamics was already developed in 1950s. The CALPHAD technique of computational thermodynamics developed since early 1970s has helped to change this view. This technique couples the phase diagram and thermochemical properties to explicitly characterize all phases in a system, including stable, metastable, and unstable phases over a wide range of temperature, pressure and composition. The modeling of Gibbs energy of individual phases enables the calculation of driving forces between any intermediate non-equilibrium states for simulating dynamic microstructure evolutions.

As same as the most commercial alloys, magnesium alloys are multi-component in nature with many intermetallic phases. To develop robust alloys that are less sensitive to process variability, phase relations under both equilibrium and non-equilibrium conditions are extremely valuable for the design of alloy compositions and processing procedures. In this presentation, the CALPHAD technique will be discussed. Particular attention will be paid to the phase relations in the Mg-Al-Zn ternary alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. G. B. Olson, “Computational Design of Hierarchically Structured Materials”, Science, Vol, 277, 1997, pp. 1237–1242.

    Article  Google Scholar 

  2. J. W. Gibbs, The Collected Works of J. Willard Gibbs, Yale Univ. Press, New Haven, 1948.

    Google Scholar 

  3. I. Prigogine and R. Dufay, Chemical Thermodynamics, Longmans Green, London, 1954.

    Google Scholar 

  4. M. Hiilert, Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  5. M. Hiilert, “Predictions of Alloy Constitution and Phase Transformations by Computer Modelling. An Aid in Alloy Design and Materials Processing”, Scand. J. Metall., Vol.26, 1997, pp. 215–223.

    Google Scholar 

  6. L. Kaufman, “Calculation of Phase Diagrams for Commercial Materials”, Journal of Phase Equilibria, Vol.14, 1993, pp. 413–417.

    Article  Google Scholar 

  7. K. Hack, Ed., The SGTE Casebook: Thermodynamics at Work, Materials Modelling Series, The Institute of Materials, London, 1996.

    Google Scholar 

  8. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals, Academic Press, New York, 1970.

    Google Scholar 

  9. N. Saunders and A. P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon, Oxford ; New York, 1998.

    Google Scholar 

  10. I. Ansara and B. Sundman, “The Scientific Group Thermodata Europe”, P. S. Glaeser, Ed., Computer Handling and Dissemination of Data, Elsevier Science Pub. Co, 1987, pp. 154–158.

    Google Scholar 

  11. A. T. Dinsdale, “SGTE Data for Pure Elements”, CALPHAD, Vol.15, 1991, pp. 317–425.

    Article  Google Scholar 

  12. B. Sundman and J. Agren, “A Regular Solution Model for Phases with Several Components and Sublattices, Suitable for Computer Applications”, J. Phy. Chem Solids, Vol.42, 1981, pp. 297–301.

    Article  Google Scholar 

  13. J. O. Andersson, A. F. Guiliermet, M. Hiilert, B. Jansson and B. Sundman, “A Compound-Energy Model of Ordering in a Phase With Sites of Different Coordination Numbers”, Acta Metall., Vol.34, 1986, pp. 437–445.

    Article  Google Scholar 

  14. D. Kramer, “Magnesium”, U.S. Geological Survey-Minerals Information, 1997.

    Google Scholar 

  15. G. Cole, “Magnesium Applications in Ford’s PNGV Mondeo”, IMA-54, Magnesium Trends, Toronto, Canada, International Magnesium Association, 1997, pp. 24–31.

    Google Scholar 

  16. H. Friedrich and S. Schumann, “The Use of Magnesium in Cars — Today and in the Future”, IMA-55, A Global Vision for Magnesium, Coronado, CA, USA, International Magnesium Association, 1998, pp. 1–7.

    Google Scholar 

  17. G. Craig, “Use of WE-43A-T6 Magnesium in the MD600 Helicopter Drive System”, IMA-55, A Global Vision for Magnesium, Coronado, CA, USA, International Magnesium Association, 1998, pp. 19–23.

    Google Scholar 

  18. P. Aroule, “Magnesium Demand and Supply”, IMA-55, A Global Vision for Magnesium, Coronado, CA, USA, International Magnesium Association, 1998, pp. 36–46.

    Google Scholar 

  19. H. Liang, S. L. Chen and Y. A. Chang, “A Thermodynamic Description of the Al-Mg-Zn System”, Metall Mater. Trans. A, Vol.28A, 1997, pp. 1725–1734.

    Article  Google Scholar 

  20. J.-O. Andersson, L. Hoglund, B. Jonsson and J. Agren, “Computer Simulation of Multicomponent Diffusional Transformations in Steel”, G. R. Purdy, Ed., Fundamentals and Applications of Ternary Diffusion, Pergmon Press, 1990, pp. 153–163.

    Chapter  Google Scholar 

  21. C. J. Smithelis, E. A. Brandes and G. Brook, Smiihelh Metals Reference Book, Butterworths-Heinemann, Oxford ; Boston, ed. 7th / edited by E.A. Brandes, G.B. Brook., 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Liu, ZK. (2016). Design Magnesium Alloys: How Computational Thermodynamics Can Help. In: Mathaudhu, S.N., Luo, A.A., Neelameggham, N.R., Nyberg, E.A., Sillekens, W.H. (eds) Essential Readings in Magnesium Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-48099-2_64

Download citation

Publish with us

Policies and ethics