Skip to main content
Log in

Understanding Slag Freeze Linings

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Slag freeze linings, the formation of protective deposit layers on the inner walls of furnaces and reactors, are increasingly used in industrial pyrometallurgical processes to ensure that furnace integrity is maintained in these aggressive, high-temperature environments. Most previous studies of freeze-linings have analyzed the formation of slag deposits based solely on heat transfer considerations. These thermal models have assumed that the interface between the stationary frozen layer and the agitated molten bath at steady-state deposit thickness consists of the primary phase, which stays in contact with the bulk liquid at the liquidus temperature. Recent experimental studies, however, have clearly demonstrated that the temperature of the deposit/liquid bath interface can be lower than the liquidus temperature of the bulk liquid. A conceptual framework has been proposed to explain the observations and the factors influencing the microstructure and the temperature of the interface at steady-state conditions. The observations are consistent with a dynamic steady state that is a balance between (I) the rate of nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and (II) the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. It is argued that the assumption that the interface temperature is the liquidus of the bulk material represents only a limiting condition, and that the interface temperature can be between T liquidus and T solidus depending on the process conditions and bath chemistry. These findings have implications for the modeling approach and boundary conditions required to accurately describe these systems. They also indicate the opportunity to integrate considerations of heat and mass flows with the selection of melt chemistries in the design of future high temperature industrial reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Goto, S. Kawakita, N. Kikumoto, and O. Iida, JOM 38 (9), 43 (1986).

    Article  Google Scholar 

  2. J.A. Aseljoki, L.K. Bailey, D.B. George, and D.W. Rodolff, JOM 37 (5), 20 (1985).

    Article  Google Scholar 

  3. C.J. Newmann, M.M. Weaver, in Conference on Sulphide Smelting, ed. R.L. Stephens, H.Y. Sohn (Warrendale, PA: TMS, 2002), pp. 317–328.

  4. D.G. Tisdale, C.G. Ransom, Symposium on Ni-Cobalt, 36th Conference of Metallurgists (Montreal: CIM, 1997), pp. 35–43.

  5. R. Veenstra, N. Voermann, B. Wasmund, Proceedings of International Symposium on Ni-Cobalt, 36th Conference of Metallurgists (Montreal: CIM, 1997).

  6. N. Voermann, F. Ham, J. Merry, R. Veens, K. Hutchinson, in Proceedings of Copper 99-Cobre 99, International Conference on Smelting Operations and Advances, ed. D.B. George, W.J. Chen, P.J. Mackey, A.J. Weddick (Warrendale, PA: TMS, 1999), pp. 573–582.

  7. J. Sarvinis, N. Voermann, C. Crowe, J. Bianchini, and B. Wasmund, Metallurgical Plant Design and Operating Strategies (Sydney: AusIMM, 2002), pp. 318–331.

    Google Scholar 

  8. P.L. Duncanson and J.D. Toth, INFACON X (Cape Town: SAIMM, 2004), pp. 488–499.

    Google Scholar 

  9. L.R. Nelson, R. Sullivan, P. Jacobs, E. Munnik, P. Lewarns, E. Roos, M.J.N. Uys, B. Salt, M. de Vries, K. McKenna, N. Voermann, B.O. Wesmund, INFACON X (Cape Town: SAIMM, 2004), pp. 508–521.

  10. A.M. Hearn, A.S.J.V. Rensburg, and J.R. Henning, Infaconx (Cape Town: SAIMM, 2004), pp. 500–507.

    Google Scholar 

  11. N. Voermann, T. Gerritsen, I. Candy, F. Stober, A. Matyas, Proceedings of 10th International Ferroalloys Congress, INFACON X, ‘Transformation through Technology’ (Cape Town: SAIMM, 2004).

  12. A.K. Kyllo and N.B. Gray, EMC 2005 (Dresden: GDMB, 2005), pp. 1027–1034.

    Google Scholar 

  13. K. Verscheure, A.K. Kyllo, A. Filzwieser, B. Blanpain, P. Wollants, Advanced Processing of Metals and Materials (Sohn International Symposium), ed. F. Kongolli, R.G. Reddy (Warrendale, PA: TMS, 2006), pp. 139–154.

  14. K. Verscheure, M. Van Camp, B. Blanpain, P. Wollants, P. Hayes, and E. Jak, Metall. Mater. Trans. B 38B, 21 (2007).

    Article  Google Scholar 

  15. K. Verscheure, M. Van Camp, B. Blanpain, P. Wollants, P. Hayes, and E. Jak, Metall. Mater. Trans. B 38B, 13 (2007).

    Article  Google Scholar 

  16. K. Grjotheim, Aluminium Electrolysis: Fundamentals of the Hall–Héroult Process, 2nd ed. (Düsseldorf: Aluminium-Verlag, 1984).

    Google Scholar 

  17. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, and J. Thonstad, Aluminium Electrolysis: The Chemistry of the Hall–Héroult Process (Düsseldorf: Aluminium-Verlag, 1977).

    Google Scholar 

  18. K. Grjotheim and B. Welch, Aluminium Smelter Technology (Düsseldorf: Aluminium Verlag, 1980).

    Google Scholar 

  19. P.C. Pistorius, JSAIMM 108, 35 (2008).

    Google Scholar 

  20. Y.K. Rao and J.H. Haberman, Can. Metall. Q. 23, 123 (1984).

    Google Scholar 

  21. G. Bisio, G. Rubatto, and R. Martini, Energy 25, 1047 (2000).

    Article  Google Scholar 

  22. Q. Liang, X. Guo, Z. Dai, H. Liu, and X. Gong, Fuel 102, 491 (2012).

    Article  Google Scholar 

  23. N. Kimura, J. Jpn. Inst. Energy 87, 236 (2008).

    Google Scholar 

  24. C.B. Solnordal, F.R.A. Jorgensen, and R.N. Taylor, Metall. Mater. Trans. B 29, 485 (1998).

    Article  Google Scholar 

  25. L.R. Nelson, R.J. Hundermark, Proceedings of Furnace Tapping Conference (Johannesburg: SAIMM, 2014), pp. 1–32.

  26. F. Guevara and G. Irons, Metall. Mater. Trans. B 42B, 652 (2011).

    Article  Google Scholar 

  27. F. Guevara and G. Irons, Metall. Mater. Trans. B 42B, 664 (2011).

    Article  Google Scholar 

  28. S. Kolås, JOM 59, 55 (2007).

    Article  Google Scholar 

  29. A. Solheim, L.I.R. Støen, Light Metals 1997, ed. R. Huglen (Warrendale, PA: TMS, 1997), pp. 325–332.

  30. K. Verscheure, Ph.D. Dissertation, Katholieke Universiteit Leuven, 2007.

  31. K. Verscheure, F. Verhaeghe, E. Boydens, M. Van Camp, B. Blanpain, and P. Wollants, Metall. Mater. Trans. B 37B, 929 (2006).

    Article  Google Scholar 

  32. G. Plascencia, T.A. Utigard, and D. Jaramillo, JOM 57, 44 (2005).

    Article  Google Scholar 

  33. D.G.C. Robertson, S. Kang, Fluid Flow Phenomena in Minerals Processing, ed. N. El-Kaddah (Warrendale, PA: TMS, 1999), pp. 157–168.

  34. H. Joubert, Proceedings of 6th International Conference on Molten Slags and Fluxes, ed. E.S. Seetharaman, D. Sichen (Trite Met 85, CD-ROM, 2000).

  35. P.C. Pistorius, JSAIMM 103, 509 (2003).

    Google Scholar 

  36. P.C. Pistorius, JSAIMM 104, 417 (2004).

    Google Scholar 

  37. J.H. Zietsman and C. Pistorius, Miner. Eng. 19, 262 (2005).

    Article  Google Scholar 

  38. M.P. Taylor. (Ph.D. Dissertation, The University of Auckland, 1984).

  39. M.P. Taylor and B.J. Welch, Metall. Trans. B 18B, 391 (1987).

    Article  Google Scholar 

  40. F.J. Guevara, G.A. Irons, Symposium on Pyrometallurgy, Copper 2007 (Toronto, Canada, 2007), pp. 481–493.

  41. B. Henning, M. Shaprio, L.A. Grange, Proceedings of 10th International Ferroalloys Congress, INFACON X: ‘Transformation through Technology’ (Cape Town: SAIMM, 2004), pp. 565–574.

  42. S. Jana, S. Ray, and F. Durst, Appl. Math. Model. 31, 93 (2007).

    Article  MATH  Google Scholar 

  43. M. Campforts, B. Blanpain, and P. Wollants, Metall. Mater. Trans. B 40B, 643 (2009).

    Article  Google Scholar 

  44. M. Campforts, E. Jak, B. Blanpain, and P. Wollants, Metall. Mater. Trans. B 40B, 619 (2009).

    Article  Google Scholar 

  45. M. Campforts, E. Jak, B. Blanpain, and P. Wollants, Metall. Mater. Trans. B 40B, 632 (2009).

    Article  Google Scholar 

  46. M. Campforts, K. Verscheure, E. Boydens, T. Van Rompaey, B. Blanpain, and P. Wollants, Metall. Mater. Trans. B 39B, 408 (2008).

    Article  Google Scholar 

  47. M. Campforts, K. Verscheure, T. Van Rompaey, E. Boydens, B. Blanpain, and P. Wollants, Metall. Mater. Trans. B 38B, 841 (2007).

    Article  Google Scholar 

  48. P. Taskinen, M. Kaskiala, P. Hietanen, K. Miettinen, and A. Forsström, Trans. Inst. Min. Metall. C 120, 147 (2011).

    Google Scholar 

  49. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B 44B, 534 (2013).

    Article  Google Scholar 

  50. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B 44B, 549 (2013).

    Article  Google Scholar 

  51. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B 44B, 1337 (2013).

    Article  Google Scholar 

  52. A. Fallah-Mehrjardi, P.C. Hayes, S. Vervynckt, and E. Jak, Metall. Mater. Trans. B 45B, 850 (2014).

    Article  Google Scholar 

  53. A. Fallah-Mehrjardi, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B 45B, 1232 (2014).

  54. A. Fallah-Mehrjardi, J. Jansson, P. Taskinen, P.C. Hayes, and E. Jak, Metall. Mater. Trans. B 45B, 864 (2014).

    Article  Google Scholar 

  55. J. Jansson, P. Taskinen, and M. Kaskiala, Can. Metall. Q. 53, 1 (2014).

    Article  Google Scholar 

  56. P. Taskinen, M. Kaskiala, K. Miettinen, J. Jansson. (Paper presented at the International Conference on Molten Slags and Fluxes, Beijing, China, 2012).

  57. A. Fallah-Mehrjardi, P.C. Hayes, E. Jak, Celebrating the Megascale: Proceedings of the Extraction and Processing Division Symposium on Pyrometallurgy in Honor of David G.C. Robertson, ed. P.J. Mackey, E.J. Grimsey, R.T. Jones, G.A. Brooks (Warrendale, PA: TMS; and New York: Wiley and Sons, Inc., 2014), pp. 259–266.

  58. A. Fallah-Mehrjardi, P.C. Hayes, E. Jak. (Paper presented at Copper 2013, Santiago, Chile, 2013).

  59. P.V. Danckwerts, Ind. Eng. Chem. 43, 1460 (1951).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Australian Research Council Linkage program, Rio Tinto Kennecott Utah Copper Corp., Xstrata Technology, Xstrata Copper, BHP Billiton Olympic Dam Operation, and Outotec Finland Oy for their financial support for the project. Thanks are also given to Lloyd Nelson (Anglo American Platinum), Phil Mackey (P.J. Mackey Technology), and Rodney Jones (MINTEK) for their valuable suggestions on industrial applications of freeze linings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata Fallah-Mehrjardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah-Mehrjardi, A., Hayes, P.C. & Jak, E. Understanding Slag Freeze Linings. JOM 66, 1654–1663 (2014). https://doi.org/10.1007/s11837-014-1127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1127-4

Keywords

Navigation