Skip to main content
Log in

The Dynamic Flow and Failure Behavior of Magnesium and Magnesium Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

We review the dynamic behavior of magnesium alloys through a survey of the literature and a comparison with our own high-strain-rate experiments. We describe high-strain-rate experiments (at typical strain rates of 103 s−1) on polycrystalline pure magnesium as well as two magnesium alloys, AZ31B and ZK60. Both deformation and failure are considered. The observed behaviors are discussed in terms of the fundamental deformation and failure mechanisms in magnesium, considering the effects of grain size, strain rate, and crystallographic texture. A comparison of current results with the literature studies on these and other Mg alloys reveals that the crystallographic texture, grain size, and alloying elements continue to have a profound influence on the high-strain-rate deformation behavior. The available data set suggests that those materials loaded so as to initiate extension twinning have relatively rate-insensitive strengths up to strain rates of several thousand per second. In contrast, some rate dependence of the flow stress is observed for loading orientations in which the plastic flow is dominated by dislocation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs, J. Met. 11, 57 (2008).

    Google Scholar 

  2. C.H. Caceres, Metall. Mater. Trans. A 38, 1649 (2007).

    Article  Google Scholar 

  3. M.K. Kulekci, Int. J. Adv. Manuf. Tech. 39, 851 (2008).

    Article  Google Scholar 

  4. M.A. Meyers, Dynamic Behavior of Materials (New York: Wiley, 1994).

    Book  MATH  Google Scholar 

  5. G.W. Groves and A. Kelly, Phil. Mag. 8, 877 (1963).

    Article  Google Scholar 

  6. M.H. Yoo, Metall. Mater. Trans. A 12, 409 (1981).

    Article  Google Scholar 

  7. J. Zhang and S.P. Joshi, J. Mech. Phys. Sol. 60, 945 (2012).

    Article  Google Scholar 

  8. M.R. Barnett, Metall. Mater. Trans. A 34, 1799 (2003).

    Article  Google Scholar 

  9. J. Koike, Metall. Mater. Trans. A 36, 1689 (2005).

    Article  Google Scholar 

  10. E.W. Kelly and W.F. Hosford. Jr., Trans. Metall. Soc. AIME 242, 654 (1968).

    Google Scholar 

  11. M.R. Barnett, Z. Keshavarz, A.G. Beer, and X. Ma, Acta Mater. 56, 5 (2008).

    Article  Google Scholar 

  12. S.S. Vagaralia and T.G. Langdon, Acta Metall. 29, 1969 (1981).

    Article  Google Scholar 

  13. A. Couret and D. Caillard, Acta Metall. 33, 1455 (1985).

    Article  Google Scholar 

  14. N. Munroe, X. Tan, and H. Gu, Scripta Mater. 36, 1383 (1997).

    Article  Google Scholar 

  15. S.R. Agnew, M.H. Yoo, and C.N. Tomé, Acta Mater. 49, 4277 (2001).

    Article  Google Scholar 

  16. H. Watanabe, H. Tsutsui, T. Mukai, M. Kohzu, S. Tanabe, and K. Higashi, Int. J. Plast 17, 387 (2001).

    Article  Google Scholar 

  17. M.R. Barnett, J. Light Met. 1, 167 (2001).

    Article  Google Scholar 

  18. P. Klimanek and A. Potzsch, Mater. Sci. Eng., A 324, 145 (2002).

    Article  Google Scholar 

  19. M.H. Yoo, J.R. Morris, K.M. Ho, and S.R. Agnew, Metall. Mater. Trans. A 33, 813 (2002).

    Google Scholar 

  20. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel, Scripta Mater. 48, 1003 (2003).

    Article  Google Scholar 

  21. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, Acta Mater. 51, 2055 (2003).

    Article  Google Scholar 

  22. M.D. Nave and M.R. Barnett, Scripta Mater. 51, 881 (2004).

    Article  Google Scholar 

  23. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Acta Mater. 52, 5093 (2004).

    Article  Google Scholar 

  24. R. Gehrmann, M.M. Frommert, and G. Gottstein, Mater. Sci. Eng., A 395, 338 (2005).

    Article  Google Scholar 

  25. J.A. Del Valle, M.T. Pérez-Prado, and O.A. Ruano, Metall. Mater. Trans. A 36, 1427 (2005).

    Article  Google Scholar 

  26. M.R. Barnett, Z. Keshavraz, and X. Ma, Metall. Mater. Trans. A 37, 2284 (2006).

    Article  Google Scholar 

  27. M.R. Barnett, Mater. Sci. Eng., A 464, 1 (2007).

    Article  Google Scholar 

  28. C.H. Caceres and A.H. Blake, Mater. Sci. Eng., A 462, 193 (2007).

    Article  Google Scholar 

  29. J.A. Del Valle and O.A. Ruano, Acta Mater. 55, 455 (2007).

    Article  Google Scholar 

  30. T. Al-Samman and G. Gottstein, Mater. Sci. Eng., A 488, 406 (2008).

    Article  Google Scholar 

  31. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew, Int. J. Plast 25, 861 (2009).

    Article  MATH  Google Scholar 

  32. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi, Acta Mater. 58, 6230 (2010).

    Article  Google Scholar 

  33. A. Ghaderi and M.R. Barnett, Acta Mater. 59, 7824 (2011).

    Article  Google Scholar 

  34. S. Mu, J.J. Jonas, and G. Gottstein, Acta Mater. 60, 2043 (2012).

    Article  Google Scholar 

  35. T. Mukai, T. Mohri, M. Mabuchi, M. Nakamura, K. Ishikawa, and K. Higashi, Scripta Mater. 39, 1249 (1998).

    Article  Google Scholar 

  36. T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa, and K. Higashi, Mater. Trans. 42, 1177 (2001).

    Article  Google Scholar 

  37. T. Yokoyama, Strain 39, 167 (2003).

    Article  Google Scholar 

  38. M.T. Tucker, M.F. Horstemeyer, P.M. Gullett, H. El Kadiri, and W.H. Whittington, Scripta Mater. 60, 182 (2009).

    Article  Google Scholar 

  39. I. Ulacia, N.V. Dudamell, F. Galvez, S. Yi, M.T. Perez-Prado, and I. Hurtado, Acta Mater. 58, 2988 (2010).

    Article  Google Scholar 

  40. I. Ulacia, C.P. Salisbury, I. Hurtado, and M.J. Worswick, J. Mater. Proc. Tech. 211, 830 (2011).

    Article  Google Scholar 

  41. N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Pérez-Prado, Acta Mater. 59, 6949 (2011).

    Article  Google Scholar 

  42. B. Li, S. Joshi, K. Azevedo, E. Ma, K.T. Ramesh, R.B. Figueiredo, and T.G. Langdon, Mater. Sci. Eng., A 517, 24 (2009).

    Article  Google Scholar 

  43. B. Li, S.P. Joshi, O. Almagri, Q. Ma, K.T. Ramesh, and T. Mukai, Acta Mater. 60, 1818 (2012).

    Article  Google Scholar 

  44. T. Mukai, H. Watanabe, K. Ishikawa, and K. Higashi, Mater. Sci. Forum 419–422, 171 (2003).

    Article  Google Scholar 

  45. X.R. Long, W.B. Shu, Z. Zheng, H.G. Jie, and L. Qing, Trans. Nonferrous Met. Soc. China 20, 594 (2010).

    Article  Google Scholar 

  46. D.H. Yu, Mater. Design 51, 323 (2013).

    Article  Google Scholar 

  47. Q. Huo, X. Yang, J. Wang, H. Sun, J. Guo, and L. Jiang, Mater. Lett. 109, 78 (2013).

    Article  Google Scholar 

  48. K. Ishikawa, H. Watanabe, and T. Mukai, J. Mater. Sci. 40, 1577 (2005).

    Article  Google Scholar 

  49. H. Liang, F. Pan, J. Wang, and J. Yang, J. Mater. Eng. Perf. 22, 2681 (2013).

    Article  Google Scholar 

  50. A.S. Khan, A. Pandey, T.G. Herold, and R.K. Mishra, Int. J. Plast 27, 688 (2011).

    Article  MATH  Google Scholar 

  51. C. Guo, F. Jiang, R. Wu, and M. Zhang, Mater. Design 49, 110 (2013).

    Article  Google Scholar 

  52. Z. Zachariah, S.S.V. Tatiparti, S.K. Mishra, N. Ramakrishnan, and U. Ramamurty, Mater. Sci. Eng., A 572, 8 (2013).

    Article  Google Scholar 

  53. D. Orlov, M. Hockauf, L.W. Meyer, and Y. Estrin, Phil. Mag. Lett. 93, 541 (2013).

    Article  Google Scholar 

  54. G. Bajargan, G. Singh, D. Sivakumar, and U. Ramamurty, Mater. Sci. Eng., A 579, 26 (2013).

    Article  Google Scholar 

  55. M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon, J. Mater. Sci. 36, 2835 (2001).

    Article  Google Scholar 

  56. S.R. Agnew, W. Wittington, A. Oppedal, H. El Kadiri, M. Shaeffer, K.T. Ramesh, J. Bhattacharyya, R. DeLorme, and B. Davis, JOM. doi:10.1007/s11837-013-0830-x.

  57. T.G. Langdon, Acta Mater. 61, 7035 (2013).

    Article  Google Scholar 

  58. S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, and V.H. Hammond, Scripta Mater. 67, 439 (2012).

    Article  Google Scholar 

  59. M. Al-Maharbi, I. Karaman, I.J. Beyerlein, D.C. Foley, K.T. Hartwig, L.J. Kecskes, and S.N. Mathaudhu, Mater. Sci. Eng., A 528, 7616 (2011).

    Article  Google Scholar 

  60. D.C. Foley, M. Al-Maharbi, K.T. Hartwig, I. Karaman, L.J. Kecskes, and S.N. Mathaudhu, Scripta Mater. 64, 193 (2011).

    Article  Google Scholar 

  61. J.D. Robson, N. Stanford, and M.R. Barnett, Acta Mater. 59, 1945 (2011).

    Article  Google Scholar 

  62. N. Stanford, J. Geng, Y.B. Chun, C.H.J. Davies, J.F. Nie, and M.R. Barnett, Acta Mater. 60, 218 (2012).

    Article  Google Scholar 

  63. K.T. Ramesh, High Rates and Impact Experiments, ed. W. Sharpe (New York: Springer, 2008), pp. 929–960.

  64. L.J. Bao, W.Q. Dong, C.Y. Jun, L.M. Ping, and H.J. Roven, Trans. Nonferrous Met. Soc. China 20, 2081 (2010).

    Article  Google Scholar 

  65. M. Niewczas, Acta Mater. 58, 5848 (2010).

    Article  Google Scholar 

  66. H. Watanabe, K. Moriwaki, T. Mukai, T. Ohsuna, K. Hiraga, and K. Higashi, Mater. Trans. 44, 775 (2003).

    Article  Google Scholar 

  67. S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, and P.K. Liaw, Acta Mater. 53, 3135 (2005).

    Article  Google Scholar 

  68. D.R. Chichilli, K.T. Ramesh, and K.J. Hemker, Acta Mater. 46, 1025 (1998).

    Article  Google Scholar 

  69. J.W. Christian and S. Mahajan, Prog. Mater Sci. 39, 1 (1995).

    Article  Google Scholar 

  70. B. Li and E. Ma, Phys. Rev. Lett. 103, 035503 (2009).

    Article  Google Scholar 

  71. X.Y. Zhang, B. Li, X.L. Wu, Y.T. Zhu, Q. Ma, Q. Liu, P.T. Wang, and M.F. Horstemeyer, Scripta Mater. 67, 862 (2012).

    Article  Google Scholar 

  72. M. Pozuelo, S.N. Mathaudhu, S. Kim, B. Li, W.H. Kao, and J.-M. Yang, Phil. Mag. Lett. 93, 640 (2013).

    Google Scholar 

  73. Z. Trojanva, T. Podrabsky, P. Lukac, R. Armstrong, J. Pesicka, and M. Forejt, Int. J. Mater. Res. 104, 762 (2013).

    Article  Google Scholar 

  74. G.I. Kanel, S.V. Razorenov, A. Bogatch, A.V. Utkin, V.E. Fortov, and D.E. Grady, J. Appl. Phys. 79, 8310 (1996).

    Article  Google Scholar 

  75. G.R. Johnson and W.H. Cook (Paper presented at the Proc. 7th Int. Symp. Ballistics, 1983), pp. 541–547.

  76. F.J. Zerilli and R.W. Armstrong, J. Appl. Phys. 61, 1816 (1987).

    Article  Google Scholar 

  77. F.J. Zerilli, Metall. Mater. Trans. A 35A, 2547 (2004).

    Article  Google Scholar 

  78. P.S. Follansbee and U.F. Kocks, Acta Metall. 36, 82 (1988).

    Article  Google Scholar 

  79. U.F. Kocks, Mater. Sci. Eng., A 317, 181 (2001).

    Article  Google Scholar 

  80. R. Lebensohn and C.N. Tome, Acta Metall. Mater. 41, 2611 (1993).

    Article  Google Scholar 

  81. S.R. Agnew, M.H. Yoo, and C.N. Tome, Acta Mater. 29, 4277 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. The work was funded by the Army Research Laboratory under the MEDE Collaborative Research Alliance, through Grant W911NF-12-2-0022. Professors Ibrahim Karaman and K. Ted Hartwig of Texas A&M University are also thanked for providing processing expertise and providing the ECAE processed AZ31B samples used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eswar Prasad, K., Li, B., Dixit, N. et al. The Dynamic Flow and Failure Behavior of Magnesium and Magnesium Alloys. JOM 66, 291–304 (2014). https://doi.org/10.1007/s11837-013-0850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0850-6

Keywords

Navigation