Skip to main content
Log in

Degradation Behavior of Nanostructured Coatings Deposited by High-Velocity Arc Spraying Process in an Actual Environment of a Coal-Fired Boiler

  • Published:
JOM Aims and scope Submit manuscript

Abstract

FeCr-based nanostructured coatings were deposited on a 301S stainless steel substrate by the high-velocity arc spraying process in the current work. The oxidation behavior of the coatings exposed to elevated temperatures (700°C and 900°C) under laboratory conditions as well as in an actual industrial environment of a coal-fired boiler (at 700 ± 10°C) was investigated. X-ray diffraction, scanning electron microscopy/energy-dispersive analysis, and transmission electron microscopy techniques were used to characterize the coating as well as to analyze the corrosion products for elucidating the corrosion mechanisms. The microhardness of the coating was found to be 520–1100 HV. The (FeCr)-based nanostructured coating showed good adherence to the 310S substrate and excellent oxidation resistance during the exposures with no tendency for spallation of its oxide scales in both environments. The nanosized grain morphology of the coating facilitated the formation of protective scales, which is continuous, adherent, and nonporous due to the higher diffusivity of alloying elements in the coatings. It precludes high-temperature oxidation by acting as a diffusion barrier between the environment and the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.S. Sidhu, S. Prakash, and R.D. Agrawal, Surf. Coat. Technol. 201, 273 (2006).

    Article  Google Scholar 

  2. T.S. Sidhu, S. Prakash, and R.D. Agrawal, J. Therm. Spray Technol. 15, 811 (2006).

    Article  Google Scholar 

  3. D. Wang, Surf. Coat. Technol. 36, 49 (1988).

    Article  Google Scholar 

  4. S. Collins, Power 137, 51 (1993).

    Google Scholar 

  5. B. Wang, Wear 199, 24 (1996).

    Article  Google Scholar 

  6. S. Kamal, R. Jayaganthan, and S. Prakash, Surf. Coat. Technol. 203, 1004 (2009).

    Article  Google Scholar 

  7. M. Kaur, H. Singh, and S. Prakash, J. Therm. Spray Technol. 18, 619 (2008).

    Article  Google Scholar 

  8. J.H. He, M. Ice, M. Schoenung, D.H. Shin, and E.J. Lavernia, J. Therm. Spray Technol. 10, 293 (2001).

    Article  Google Scholar 

  9. B.S. Sidhu, D. Puri, and S. Prakash, Mater. Sci. Eng. A 368, 149 (2004).

    Article  Google Scholar 

  10. M.H. Staia, T. Valente, C. Bartuli, D.B. Lewis, C.P. Constable, A. Roman, J. Lesage, D. Chicot, and G. Mesmacque, Surf. Coat. Technol. 146–147, 563 (2001).

    Article  Google Scholar 

  11. B.S. Sidhu and S. Prakash, J. Mater. Process. Technol. 172, 52 (2006).

    Article  Google Scholar 

  12. S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, Surf. Coat. Technol. 200, 4212 (2012).

    Article  Google Scholar 

  13. M. Kaur, H. Singh, and S. Prakash, Surf. Coat. Technol. 206, 530 (2011).

    Article  Google Scholar 

  14. S. Kamal, R. Jayaganthan, and S. Prakash, J. Alloy. Compd. 472, 378 (2009).

    Article  Google Scholar 

  15. J.K.N. Murthy and B. Venkataraman, Surf. Coat. Technol. 200, 2643 (2006).

    Article  Google Scholar 

  16. G. Barbezat, A.R. Nicoll, and A. Sickinger, Wear 162–164, 529 (1993).

    Article  Google Scholar 

  17. B.Q. Wang and M.W. Seitz, Wear 250, 755 (2001).

    Article  Google Scholar 

  18. G. Liu, K. Rozniatowski, and K.J. Kurzydlowski, Mater. Charact. 46, 99 (2001).

    Article  Google Scholar 

  19. L.L. Ma, L.S. Gaung, Y. Jia, L. Juan, and L. Jian, Trans. Nonferrous Met. Soc. China 20, 201 (2010).

    Article  Google Scholar 

  20. V.E. Buchanan, Surf. Coat. Technol. 203, 3638 (2009).

    Article  Google Scholar 

  21. J. Cheng, X. Liang, B. Xu, and Y. Wu, J. Non-Cryst. Solids 355, 1673 (2009).

    Article  Google Scholar 

  22. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).

    Article  Google Scholar 

  23. S. Matthews, M. Hyland, and B. James, Acta Mater. 51, 4267 (2003).

    Article  Google Scholar 

  24. N. Hussain, K.A. Shahid, I.H. Khan, and S. Rahman, J. Oxid. Met. 41, 251 (1994).

    Article  Google Scholar 

  25. V.N. Shukla, R. Jayaganthan, and V.K. Tewari, Adv. Mater. Res. 585, 483 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to M/s Industrial Processors and Metallizers (IPM), Pvt. Ltd., New Delhi, India for providing the powders and coating facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, V.N., Jayaganthan, R. & Tewari, V.K. Degradation Behavior of Nanostructured Coatings Deposited by High-Velocity Arc Spraying Process in an Actual Environment of a Coal-Fired Boiler. JOM 65, 784–791 (2013). https://doi.org/10.1007/s11837-013-0612-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0612-5

Keywords

Navigation