Skip to main content
Log in

Mechanical Behavior and Microstructural Development of 6063-T1 Aluminum Alloy Processed by Equal-Channel Angular Pressing (ECAP): Pass Number Influence

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Equal-channel angular pressing (ECAP) is a very interesting method for modifying the microstructure in producing ultrafine-grained materials and nanomaterials. It consists mainly of pressing test samples through a die containing two channels that are equal in cross section and intersect at a certain angle. As a result of pressing, the sample theoretically deforms by simple shear and retains the same cross-sectional area to allow repeat pressing for several cycles. A 6063-T1 aluminum alloy was investigated in this study. The specimens were processed for up to nine passes (one, three, six, and nine ECAP passes, respectively) using a die channel angle of 90°. After ECAP, the samples were cut from each specimen and prepared for metallographic analysis and mechanical testing. The microstructures of the ECAP treated and as-received material were investigated using both optical microscopy and scanning electron microscopy. All samples (ECAP processed and as-received) were mechanically investigated in compression tests. Ultimate compressive strength, yield strength, and compression modulus were obtained. Also, all ECAP processed specimens were investigated for microhardness and compared with the as-received material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.G. Kaufman, Properties of Aluminum Alloys—Tensile, Creep and Fatigue Data at High and Low Temperatures (Materials Park, OH: ASM International and The Aluminum Association, 2000).

    Google Scholar 

  2. R.Z. Valiev, K. Islamgaliev, and V. Alexandrov, Prog. Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  3. R.Z. Valiev and T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006).

    Article  Google Scholar 

  4. N. Serban, R. Saban, N. Ghiban, B. Ghiban, and R.I. Iacobescu, Metall. Int. XIV, 67 (2009).

    Google Scholar 

  5. S. Ferrasse and V.M. Segal, Metall. Mater. Trans. A 28A, 1047 (1997).

    Article  Google Scholar 

  6. Z. Horita and T. Fujinami, Metall. Mater. Trans. A 31A, 691 (2000).

    Article  Google Scholar 

  7. U. Chakkingal, A.B. Suriadi, and P.F. Thomson, Mater. Sci. Eng. A 266, 241 (1999).

    Article  Google Scholar 

  8. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, Mater. Sci. Eng. A 257, 328 (1998).

    Article  Google Scholar 

  9. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, and R.Z. Valiev, Mater. Sci. Eng. A 303, 82 (2001).

    Article  Google Scholar 

  10. M. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, Scr. Mater. 45, 89 (2001).

    Article  Google Scholar 

  11. W.J. Kim, C.W. An, Y.S. Kim, and S.I. Hong, Scr. Mater. 47, 39 (2002).

    Article  Google Scholar 

  12. N. Ghiban, N. Serban, R. Saban, V.D. Cojocaru, B. Ghiban, and A. Ghiban (Paper presented at the Annals of DAAAM for 2009 & Proceedings of the 20th International DAAAM Symposium, Vienna, Austria, 25–28 November 2009, vol. 20, no. 1), pp. 1547–1548.

  13. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, Acta Mater. 45, 4733 (1997).

    Article  Google Scholar 

  14. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Scr. Mater. 35, 143 (1996).

    Article  Google Scholar 

  15. N. Llorca-Isern, C. Luis-Perez, P.A. Gonzalez, L. Laborde, and D. Patino, Rev. Adv. Mater. Sci. 10, 473 (2005).

    Google Scholar 

  16. A.P. Zhilyaev, D.L. Swisher, K. Oh-ishi, T.G. Langdon, and T.R. McNelley, Mater. Sci. Eng. A 429, 137 (2006).

    Article  Google Scholar 

  17. M. Reihanian, R. Ebrahimi, M.M. Moshksar, D. Terada, and N. Tsuji, Mater. Charact. 59, 1312 (2008).

    Article  Google Scholar 

  18. E.A. El-Danaf, Mater. Sci. Eng. A 487, 189 (2008).

    Article  Google Scholar 

  19. J.C. Werenskiold and H.J. Roven, Mater. Sci. Eng. A 410–411, 174 (2005).

    Google Scholar 

  20. E.A. El-Danaf, M.S. Soliman, A.A. Almajid, and M.M. El-Rayes, Mater. Sci. Eng. A 458, 226 (2007).

    Article  Google Scholar 

  21. K. Oh-ishi, A.P. Zhilyaev, and T.R. McNelley, Mater. Sci. Eng. A 410–411, 183 (2005).

    Google Scholar 

  22. J. Lian, B. Baudelet, and A.A. Nazarov, Mater. Sci. Eng. A 172, 23 (1993).

    Article  Google Scholar 

  23. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (New York: Wiley, 1982).

    Google Scholar 

  24. D. Kuhlmann-Wilsdorf, Mater. Sci. Eng. A 113, 1 (1989).

    Article  Google Scholar 

  25. N. Hansen, X. Huang, and D.A. Hughes, Mater. Sci. Eng. A 317, 3 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae Serban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serban, N., Cojocaru, VD. & Butu, M. Mechanical Behavior and Microstructural Development of 6063-T1 Aluminum Alloy Processed by Equal-Channel Angular Pressing (ECAP): Pass Number Influence. JOM 64, 607–614 (2012). https://doi.org/10.1007/s11837-012-0311-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0311-7

Keywords

Navigation