Skip to main content
Log in

Investigation of Microstructure, Mechanical Properties and Residual Stress in Non-equal-Channel Angular Pressing of 6061 Aluminum Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In equal-channel angular pressing, it is necessary to repeat the process to achieve large strains. However, in non-equal-channel angular pressing (NECAP), the large strains can be achieved without repetition of the process. In this study, the effect of the NECAP on microstructure, mechanical properties and residual stress (RS) of widely used 6061 aluminum alloy sample was investigated. After the NECAP process, yield strength, tensile strength, hardness and uniformity of the hardness distribution increased dramatically and fracture strain and tensile toughness were significantly reduced. The effect of the NECAP on the yield strength was significantly higher than other parameters of the mechanical properties. Also, the microstructure was obtained with more uniformity and with the grain size of 18.5 times smaller relative to the initial sample. The numerical simulation results showed that by increasing friction coefficient, the plastic strain increases. In this study, a very good agreement was obtained between the results of experimental method of contour and finite element method in the RS measuring. In this paper, the RS factor (R.S.F.) was introduced to investigate the RS distribution. With the aid of this factor, one can obtain a general understanding of the RS distribution in one part. In this research, the effect of the friction coefficient on the R.S.F. in surfaces and middle cross section of the NECAPed sample was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bagherpour E, Pardis N, Reihanian M, and Ebrahimi R, Int J Adv Manuf Technol100 (2018) 1647.

    Google Scholar 

  2. Javidikia M, and Hashemi R, Trans Indian Inst Met70 (2017) 2547.

    CAS  Google Scholar 

  3. Honarpisheh M, Haghighat M E, Kotobi M, Proc Inst Mech EngPart L J Mater Des Appl232 (2018) 841.

    CAS  Google Scholar 

  4. Kotobi M, and Honarpisheh M, Strain Anal Eng Des52 (2017) 83.

    Google Scholar 

  5. Moazam M A, and Honarpisheh M, Mater Res Express6 (2019) 0865j3.

    CAS  Google Scholar 

  6. Nazari F, and Honarpisheh M, Proc Inst Mech Eng Part C J Mech Eng Sci233 (2018) 3751.

    Google Scholar 

  7. Nazari F, and Honarpisheh M, Manuf Process32 (2018) 11.

    Google Scholar 

  8. Nazari F, Honarpisheh M, and Zhao H, Micron 132 (2020) 102843.

    CAS  Google Scholar 

  9. Hassan M S, Sharma S, and Kumar B, Int Ref J Eng Sci6 (2017) 66.

    Google Scholar 

  10. Kumar S R, Gudimetla K, Mohanlal S, and Ravisankar B, Trans Indian Inst Met72 (2019) 1437.

    Google Scholar 

  11. Hasani A, Toth L S, Rouhani M S, Adv Mater Sci Eng 2019 (2019) 5682585. https://doi.org/10.1155/2019/5682585.

    Article  CAS  Google Scholar 

  12. Lee D N, Scripta Mater43 (2000) 115.

    CAS  Google Scholar 

  13. Hasani A, Tóth L S, and Beausir B, Eng Mater Technol132 (2010) 1.

    Google Scholar 

  14. Toth L S, Lapovok R, Hasani A, and Gub C H, Scripta Mater61 (2009) 1121.

    CAS  Google Scholar 

  15. Gu C F, and Toth L S, Scripta Mater 67 (2012) 33.

    CAS  Google Scholar 

  16. Deng G Y, Lu C, Su L H, Li J T, Zhu H T, Liu X H, and Tieu A K, Adv Mater Res651 (2013) 442.

    Google Scholar 

  17. Freshteh-Saniee F, Asgari M, Barati M, and Pezeshki S M, Trans Nonferr Met Soc China24 (2014) 3274.

    Google Scholar 

  18. Fereshteh-Saniee F, Asgari M, and Fakhar N, Appl Phys A122 (2016) 779.

    Google Scholar 

  19. Asgari M, Fereshteh-Saniee F, Pezeshki M, and Barati M, Mater Sci Eng A678 (2016) 320.

    CAS  Google Scholar 

  20. Asgari M, and Fereshteh-Saniee F, Trans Nonferr Met Soc China26 (2016) 1276.

    CAS  Google Scholar 

  21. El-Asfoury M S, Nasr M N A, Nakamura N, and Abdel-Moneim A, Electron Mater47 (2018) 242.

    CAS  Google Scholar 

  22. Rosochowski A, Olejnik L, in AIP Conference Proceedings, China (2016).

  23. El-Asfoury M S, Nasr M N A, and Abdel-Moneim A, High Perform Opt Des Struct Mater II166 (2016) 103.

  24. Frolov Y V, Zubko Y Y, and Ashkelyanets A V, in Plastic deformation of metals, (ed) Frolov Y V, Accent PP (2017).

  25. Schajer G, Practical Residual Stress Measurement Methods, Wiley, Hoboken (2013).

    Google Scholar 

  26. Totten G, Howes M, and Inoue T, Handbook of Residual Stress and Deformation of Steel, ASM International, Cleveland (2002).

    Google Scholar 

  27. ASM International, ASM Handbook: Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Cleveland (1992).

    Google Scholar 

  28. Zhang Z, Junli W, Zhang Q, Supeng Z, Qingnan S, and Huarong Q, Materials11 (2018) 1246.

    Google Scholar 

  29. Jooybari M, Shahbazi Karami J, and Sheikhi M, Comput Appl Res6 (2017) 115.

    Google Scholar 

  30. Murashkin M, Medvedev A, Kazykhanov V, Krokhin A, Raab G, Enikeev N, and Valiev R Z, Metals5 (2015) 2148.

    CAS  Google Scholar 

  31. Bayat Asl Y, Meratian M, Emamikhah A, Mokhtari Homami R, and Abbasi A, Eng Manuf229 (2015) xxx.

    Google Scholar 

  32. Khan A S, and Meredith C S, Plasticity26 (2010) 189.

    CAS  Google Scholar 

  33. Murashkin M Y, Bobruk E V, Kil’mametov A R, and Valiev R Z, Phys Met Metallogr108 (2009) 415.

  34. Cherukuri B, Nedkova T S, and Srinivasan R, Mater Sci Eng A410–411 (2005) 394.

    Google Scholar 

  35. Ferrasse S, Segal V M, Hartwig K T, and Goforth R E, Mater Res12 (1997) 1253.

    CAS  Google Scholar 

  36. Rafizadeh E, Mani A, and Kazeminezhad M, Mater Sci Eng A515 (2009) 162.

    Google Scholar 

  37. Prime M B, and Gonzales A R, in Proceeding of the Sixth International Conference on Residual Stresses, UK (2000) vol 1 p. 617.

  38. Prime M B, Eng Mater Technol123 (2001) 162.

    Google Scholar 

  39. Rossini N, Dassisti M, Benyounis K Y, and Olabi A G, Mater Des35 (2012) 572.

    Google Scholar 

  40. Schajer G S, Exp Mech50 (2010) 1117.

    Google Scholar 

  41. Nazari F, Honarpisheh M, and Zhao H, Adv Manuf Technol102 (2019) 4361.

    Google Scholar 

  42. Zhang Y, Ganguly S, Stelmukh V, Fitzpatrick M E, and Edwards L, Neutron Res11 (2003) 181.

    Google Scholar 

  43. Thibault D, Bocher P, and Thomas M, Mater Process Technol209 (2009) 2195.

    CAS  Google Scholar 

  44. Thibault D, Bocher P, Thomas M, Gharghouri M, and Côté M, Mater Sci Eng A527 (2010) 6205.

    Google Scholar 

  45. Turski M, and Edwards L, Int J Press Vessels Pip86 (2009) 126.

    CAS  Google Scholar 

  46. Alinaghian I, Honarpisheh M, and Amini S, Adv Manuf Technol95 (2018) 2757.

    Google Scholar 

  47. Alinaghian I, Amini S, and Honarpisheh M, Strain Anal53 (2018) 494.

    Google Scholar 

  48. Jafari H, Mansouri H, and Honarpisheh M, J Manuf Process43 (2019) 145.

    Google Scholar 

  49. Cuellar S D, Hill M R, DeWald A T, and Rankin J E, Fatigue44 (2012) 8.

    CAS  Google Scholar 

  50. Toparli M B, Fitzpatrick M E, and Gungor S, Exp Mech53 (2013) 1705.

    Google Scholar 

  51. Prime M B, Sebring R J, Edwards J M, Hughes D J, and Webster P J, Soc Exp44 (2004) 176.

    Google Scholar 

  52. Askeland D R, Fulay P P, and Wright W J, The Science and Engineering of Materials. Cengage Learning, USA (2010).

  53. Ding S X, Chang C P, and Kao P W, Metall Mater40A (2009) 415.

    CAS  Google Scholar 

  54. Zhang X, Hua L, and Liu Y, Mater Sci Eng A535 (2012) 153.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Honarpisheh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanlari, H., Honarpisheh, M. Investigation of Microstructure, Mechanical Properties and Residual Stress in Non-equal-Channel Angular Pressing of 6061 Aluminum Alloy. Trans Indian Inst Met 73, 1109–1121 (2020). https://doi.org/10.1007/s12666-020-01945-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01945-5

Keywords

Navigation