Skip to main content

Advertisement

Log in

Advances in multi-scale modeling of solidification and casting processes

  • Enabling ICME
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Gránásy, T. Pusztai, T. Börzsönyi, J.A. Warren, and J.F. Douglas, Nature Mater., 3 (2004), pp. 645–650.

    Article  Google Scholar 

  2. S.-L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun, and G.B. McFadden, Physica D, 69 (1993), pp. 189–200.

    Article  CAS  Google Scholar 

  3. G. Caginalp and W. Xie, Phys. Rev. E, 48 (1993), pp. 1897–1909.

    Article  CAS  Google Scholar 

  4. S.A. David and T. DebRoy, Science, 257 (1992), pp. 497–500.

    Article  CAS  Google Scholar 

  5. A. Karma, “Prediction of Dendrite Growth Directions” (Presented at the TMS Annual Meeting, San Francisco, CA, 2005).

  6. K. Pattersen, O. Lohne, and N. Ryum, Metall. Trans. A, 21 (1990), pp. 221–230.

    Article  Google Scholar 

  7. F. Czerwinski, Acta Mater., 50 (2002), pp. 3265–3281.

    CAS  Google Scholar 

  8. J. Eiken, B. Böttger, and I. Steinbach, Modeling of Casting, Welding and Advanced Solidification Processes-XI (Warrendale, PA: TMS, 2006), pp. 489–496.

    Google Scholar 

  9. Liang Huo et al., Materials Science Forum, 561–565 (2007), pp. 1797–1800.

    Article  Google Scholar 

  10. H.B. Yin and S.D. Felicelli, Modeling and Simulation in Materials Science and Engineering, 17(7) (2009), 075011.

    Article  Google Scholar 

  11. M.F. Zhu and D.M. Stefanescu, Acta Materialia, 55 (2007), pp. 1741–1755.

    Article  CAS  Google Scholar 

  12. Liang Huo, Zhiqiang Han, and Baicheng Liu, “Two- and Three-dimensional Cellular Automaton Models for Simulating Dendrite Morphology Evolution of Cast Magnesium Alloys” (Presented at the 139th TMS Annual Meeting and Exhibition, Washington State Convention Center, Seattle, 14–18 February 2010).

  13. Liang Huo, Zhiqiang Han, and Baicheng Liu, Materials Science Forum, 638–642 (2010), pp. 1562–1568.

    Article  Google Scholar 

  14. B. Li, Q.Y. Xu, and B.C. Liu, Materials Science Forum, 561–565 (2007), pp. 1787–1792.

    Article  Google Scholar 

  15. J. Yu et al., J. Materials Science and Technology, 23 (2007), p. 47.

    Google Scholar 

  16. M. Rappaz and C.A. Gandin, Acta Metallurgica et Materialia, 41 (1993), p. 345.

    Article  CAS  Google Scholar 

  17. P. Thevoz, J.L. Desbiolles, and M. Rappaz, Metall. Trans. A, 20A (1989), p. 311.

    CAS  Google Scholar 

  18. W. Kurz, B. Giovanola, and R. Trivedi, Acta Metallurgica, 34 (1986), p. 823.

    Article  CAS  Google Scholar 

  19. J. Yu et al., “Experimental Study and Numerical Simulation of Directionally Solidified Turbine Blade Casting” (Presented at the Asian Foundry Congress, Seoul, Korea, 2007).

  20. D. Pan et al., JOM, 62(5) (2010), pp. 30–34.

    Article  CAS  Google Scholar 

  21. G. Lesoult, Mater. Sci. and Eng. A, 413–414 (2005), pp. 19–29.

    Article  Google Scholar 

  22. C. Beckermann, Int. Mater. Rev., 47(5) (2002), pp. 243–261.

    Article  CAS  Google Scholar 

  23. M. Tateno, Transactions ISIJ, 25 (1985), pp. 97–108.

    Google Scholar 

  24. H. Ushiyama, G. Yuasa, and T. Yajima, Ironmaking and Steelmaking, 5 (1978), pp. 121–134.

    CAS  Google Scholar 

  25. V.I. Bogdanov, V.A. Durynin, and V.V. Tsukanov, Russian Metallurgy (Metally) (7) (2007), pp. 626–633.

  26. D.R. Liu et al., Int. J. Cast Metals Research, 23(6) (2010), pp. 354–363.

    Article  Google Scholar 

  27. W.S. Li, H.F. Shen, and B.C. Liu, Steel Research International, 81(11) (2010), pp. 994–1000.

    Article  CAS  Google Scholar 

  28. H. Combeau et al., Metall. Mater. Trans. B, 40 (2009), pp. 289–304.

    Article  Google Scholar 

  29. M. Wu and A. Ludwig, Acta Materialia, 57 (2009), pp. 5621–5631.

    Article  CAS  Google Scholar 

  30. D.J. Hebditch and J.D. Hunt, Metall. Trans., 5 (1974), pp. 1557–1564.

    Article  CAS  Google Scholar 

  31. N. Ahmad et al., Metall. Mater. Trans. A, 29 (1998), pp. 617–630.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baicheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Xu, Q., Jing, T. et al. Advances in multi-scale modeling of solidification and casting processes. JOM 63, 19–25 (2011). https://doi.org/10.1007/s11837-011-0054-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0054-x

Keywords

Navigation