Skip to main content
Log in

The development of biocomposite nanofibers for tissue scaffolding applications

  • Overview
  • Biological Materials Science
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The last decade has seen significant progress in the production of nanofibers by electrospinning. One of the major drivers to this progress is the potential use of nanofibrous structures as scaffolds for engineering tissues in regenerative medicine. Electrospun fibers are capable of emulating the nanofibrous architecture of the native extracellular matrix. They can potentially provide in-vivo-like nanomechanical and physicochemical signaling cues to the cells to establish apposite cell-scaffold interactions and promote functional changes between and within cells toward synthesis of a genuine extracellular matrix over time. In this context, this paper presents a brief overview of a scaffold design strategy. It also presents recent research pertaining to developing biomimetic and bioactive nanofibrous tissue scaffolds through electrospinning biocomposite nanofibers of organic-organic and inorganic-organic hybrids, which are potentially applicable to soft and hard tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Langer and J.P. Vacanti, Science, 260 (1993), p. 920.

    Article  CAS  Google Scholar 

  2. J.A. Hubbell, Bio/Technology, 13 (1995), p. 565.

    Article  CAS  Google Scholar 

  3. P.X. Ma, Materials Today, 7 (2004), p. 30.

    Article  CAS  Google Scholar 

  4. G. Chen, T. Ushida, and T. Tateishi, Macromolecular Bioscience, 2 (2002), p. 67.

    Article  CAS  Google Scholar 

  5. D.W. Hutmacher, Journal of Biomaterials Science: Polymer Edition, 12 (2001), p. 107.

    Article  CAS  Google Scholar 

  6. D. Reneker and I. Chun, Nanotechnology, 7 (1996), p. 216.

    Article  CAS  Google Scholar 

  7. Z.-M. Huang et al., Composites Science and Technology, 63 (2003), p. 2223.

    Article  CAS  Google Scholar 

  8. D.H. Reneker et al., Journal of Applied Physics, 87 (2000), p. 4531.

    Article  CAS  Google Scholar 

  9. Y.M. Shin et al., Polymer, 42 (2001), p. 09955.

  10. Y.M. Shin et al., Appl. Phys. Lett., 78 (2001), p. 1149.

    Article  CAS  Google Scholar 

  11. A. Fertala, W.B. Han, and F.K. Ko, Journal of Biomedical Materials Research, 57 (2001), p. 48.

    Article  CAS  Google Scholar 

  12. J.D. Stitzel et al., Journal of Biomaterials Applications, 16 (2001), p. 22.

    Article  CAS  Google Scholar 

  13. W.-J. Li et al., Journal of Biomedical Materials Research, 60 (2002), p. 613.

    Article  CAS  Google Scholar 

  14. J.A. Matthews et al., Biomacromolecules, 3 (2002), p. 232.

    Article  CAS  Google Scholar 

  15. K. Ohkawa et al., Macromol. Rapid Commun., 25 (2004), p. 1600.

    Article  CAS  Google Scholar 

  16. P. Giusti, L. Lazzeri, and L. Lelli, Trends in Polymer Science, 1 (1993), p. 261.

    CAS  Google Scholar 

  17. N. Barbani et al., Journal of Applied Polymer Science, 72 (1999), p. 971.

    Article  CAS  Google Scholar 

  18. P. Giusti et al., Biomaterials, 15 (1994), p. 1229.

    Article  CAS  Google Scholar 

  19. M.G. Cascone et al., Polymer, 39 (1998), p. 6357.

    Article  CAS  Google Scholar 

  20. M.G. Cascone et al., Journal of Biomaterials Science: Polymer Edition, 12 (2001), p. 267.

    Article  CAS  Google Scholar 

  21. G. Chen, T. Ushida, and T. Tateishi, Chem. Commun., 16 (2000), p. 1505.

    Article  Google Scholar 

  22. A. Ide et al., Materials Science and Engineering: C, 17 (2001), p. 95.

    Article  Google Scholar 

  23. J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Medical Engineering & Physics, 20 (1998), p. 92.

    Article  CAS  Google Scholar 

  24. S. Weiner and H.D. Wagner, Annual Review of Materials Science, 28 (1998), p. 271.

    Article  CAS  Google Scholar 

  25. Y.Z. Zhang et al., Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 72B (2005), p. 156.

    Article  CAS  Google Scholar 

  26. Y.Z. Zhang et al., Nanotechnology, 17 (2006), p. 901.

    Article  CAS  Google Scholar 

  27. E.J. Chong et al., Acta Biomaterialia, 3 (2007), p. 321.

    Article  CAS  Google Scholar 

  28. J.J. Stankus, J. Guan, and W.R. Wagner, Journal of Biomedical Materials Research Part A, 70A (2004), p. 603.

    Article  CAS  Google Scholar 

  29. Y. Ito et al., Journal of Bioscience and Bioengineering, 100 (2005), p. 43.

    Article  CAS  Google Scholar 

  30. E. Schnell et al., Biomaterials, 28 (2007), p. 3012.

    Article  CAS  Google Scholar 

  31. J.R. Venugopal, Y.Z. Zhang, and S. Ramakrishna, Artificial Organs, 30 (2006), p. 440.

    Article  CAS  Google Scholar 

  32. W. Meng et al., Journal of Biomaterials Science: Polymer Edition, 18 (2007), p. 81.

    Article  Google Scholar 

  33. J. Stitzel et al., Biomaterials, 27 (2006), p. 1088.

    Article  CAS  Google Scholar 

  34. K.E. Park et al., Biomacromolecules, 7 (2006), p. 635.

    Article  CAS  Google Scholar 

  35. Y.Z. Zhang et al., Chem. Mater., 16 (2004), p. 3406.

    Article  CAS  Google Scholar 

  36. I.G. Loscertales et al., Science, 295 (2002), p. 1695.

    Article  CAS  Google Scholar 

  37. Z. Sun et al., Advanced Materials, 15 (2003), p. 1929.

    Article  CAS  Google Scholar 

  38. D. Li and Y. Xia, Nano Letters, 4 (2004), p. 933.

    Article  CAS  Google Scholar 

  39. J.H. Yu, S.V. Fridrikh, and G.C. Rutledge, Advanced Materials, 16 (2004), p. 1562.

    Article  CAS  Google Scholar 

  40. Y.Z. Zhang et al., International Journal of Nanomedicine, 2 (2007), p. 623.

    CAS  Google Scholar 

  41. Y.Z. Zhang et al., Biomacromolecules, 6 (2005), p. 2583.

    Article  CAS  Google Scholar 

  42. Y.Z. Zhang et al., Biomacromolecules, 7 (2006), p. 1049.

    Article  CAS  Google Scholar 

  43. T. Song et al., Chemical Physics Letters, 415 (2005), p. 317.

    Article  CAS  Google Scholar 

  44. H. Jiang et al., Journal of Controlled Release, 108 (2005), p. 237.

    Article  CAS  Google Scholar 

  45. Z.M. Huang et al., Journal of Biomedical Materials Research Part A, 77A (2006), p. 169.

    Article  CAS  Google Scholar 

  46. M.J. Glimcher, Reviews of Modern Physics, 31 (1959), p. 359.

    Article  CAS  Google Scholar 

  47. S. Weiner and W. Traub, FEBS Letters, 206 (1986), p. 262.

    Article  CAS  Google Scholar 

  48. W.J. Landis et al., J. Struct. Biol., 110 (1993), p. 39.

    Article  CAS  Google Scholar 

  49. X.L. Deng et al., Journal of Biomaterials Science: Polymer Edition, 18 (2007), p. 117.

    Article  CAS  Google Scholar 

  50. K. Fujihara, M. Kotaki, and S. Ramakrishna, Biomaterials, 26 (2005), p. 4139.

    Article  CAS  Google Scholar 

  51. S.A. Catledge et al., Biomed. Mater., 2 (2007), p. 142.

    Article  CAS  Google Scholar 

  52. J. Venugopal et al., Nanotechnology, 18 (2007), p. 1.

    Article  Google Scholar 

  53. C. Li et al., Biomaterials, 27 (2006), p. 3115.

    Article  CAS  Google Scholar 

  54. H.-W. Kim, H.-H. Lee, and J.C. Knowles, Journal of Biomedical Materials Research Part A, 79A (2006), p. 643.

    Article  CAS  Google Scholar 

  55. X. Xu et al., European Polymer Journal, 43 (2007), p. 3187.

    Article  CAS  Google Scholar 

  56. H.-W. Kim, J.-H. Song, and H.-E. Kim, Adv. Funct. Mater., 15 (2005), p. 1988.

    Article  CAS  Google Scholar 

  57. W. Cui et al., Journal of Biomedical Materials Research Part A, 82A (2007), p. 831.

    Article  CAS  Google Scholar 

  58. Y. Ito et al., J.Biosci.Bioeng., 100 (2005), p. 43.

    Article  CAS  Google Scholar 

  59. J. Chen, B. Chu, and B.S. Hsiao, Journal of Biomedical Materials Research Part A, 79A (2006), p. 307.

    Article  CAS  Google Scholar 

  60. F. Yang, J.G.C. Wolke, and J.A. Jansen, Chemical Engineering Journal, 137 (2008), p. 154.

    Article  CAS  Google Scholar 

  61. Y.Z. Zhang et al., Biomacromolecules, 9 (2008), p. 136.

    Article  CAS  Google Scholar 

  62. S.A. Sell et al., Biomedical Materials, 1 (2006), p. 72.

    Article  CAS  Google Scholar 

  63. C. Li and D.L. Kaplan, Current Opinion in Solid State and Materials Science, 7 (2003), p. 265.

    Article  CAS  Google Scholar 

  64. S.R. Bhattarai et al., Biomaterials, 25 (2004), p. 2595.

    Article  CAS  Google Scholar 

  65. M. Li et al., Journal of Biomedical Materials Research Part A, 79A (2006), p. 963.

    Article  CAS  Google Scholar 

  66. T.A. Telemeco et al., Acta Biomaterialia, 1 (2005), p. 377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y.Z., Lim, C.T. The development of biocomposite nanofibers for tissue scaffolding applications. JOM 60, 45–48 (2008). https://doi.org/10.1007/s11837-008-0070-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-008-0070-7

Keywords

Navigation