Skip to main content
Log in

Novel rare-earth-containing lead-free solders with enhanced ductility

  • Research Summary
  • Lead-Free Solder
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Severallead-free material systems are availableas replacements for traditional lead-based solders in microelectronic packaging, including near-eutectic combinations oftin-rich alloys. Although these materials have superior mechanical properties as compared to the Pb-Sn system, much work remains in developing these materials for electronic packaging. Small additions of rare-earth elements have been shown to refine the microstructure of several lead-free solder systems, thus improving their mechanical properties. This study investigated the effect of the addition of lanthanum on the melting behavior, microstructure, and shear strength of an Sn-3.9Ag-0.7Cu alloy. The influence of LaSn3 intermetallics on microstructural refinement and damage evolution in these novel solders is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bath, C. Handwerker, and E. Bradley, Circ Assemb. 11 (5) (2000), pp. 30–40.

    Google Scholar 

  2. I.E. Anderson et al., J. Electron Mater., 30 (2001), pp. 1050–1059.

    CAS  Google Scholar 

  3. D.H. Kim, P. Elenius, and S. Barrett, IEEE Trans. Electron. Pack. Manu., 25 (2) (2002), pp. 84–90.

    Article  CAS  Google Scholar 

  4. M.E. Loomans and M.E. Fine, Metall. Mater. Trans. A, 31 (4) (2000), pp. 1155–1162.

    Article  Google Scholar 

  5. A. Schubert et al., Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces Piscataway, NJ: IEEE, 2001), pp. 129–134.

    Book  Google Scholar 

  6. D.H. Xiao et al., J. Alloy Compd., 352 (2003), pp. 84–88.

    Article  CAS  Google Scholar 

  7. J.O. Choi et al., Mat. Sci. Eng. A-Struc., 383 (2004), pp. 323–333.

    Article  CAS  Google Scholar 

  8. G. Pettersen et al., Mat. Sci. Eng. A-Struc., 207 (1996), pp. 115–120.

    Article  Google Scholar 

  9. J. Chang, I. Moon, and C. Choi, J. Mater. Sci., 33 (1998), pp. 5015–5023.

    Article  CAS  Google Scholar 

  10. A. Ramirez, H. Mavoori, and S. Jin, Appl. Phys. Lett., 80 (3) (2002), pp. 398–400.

    Article  CAS  Google Scholar 

  11. C.M.K. Wu et al., J. Electron. Mater., 32 (2) (2003), pp. 63–69.

    Article  CAS  Google Scholar 

  12. Z.G. Chen et al., J. Electron. Mater., 32(4) (2003), pp. 235–243.

    Article  CAS  Google Scholar 

  13. D.Q. Yu, J. Zhao, and L. Wang, J. Alloy. Compd., 376 (2004), pp. 170–175.

    Article  CAS  Google Scholar 

  14. Z. Xia et al., J. Electron. Mater., 31 (6) (2002), pp. 564–567.

    Article  CAS  Google Scholar 

  15. Z.G. Chen et al., J. Electron. Mater., 31 (10 (2002), pp. 1122–1128.

    Article  CAS  Google Scholar 

  16. C.M.T. Law et al., IEEE Transactions on Advanced Packaging, 28 (2) (2005), pp. 252–258.

    Article  CAS  Google Scholar 

  17. C.M.L. Wu et al., Mater. Res., 17 (12) (2002), pp. 3146–3154.

    Article  CAS  Google Scholar 

  18. X. Ma, Y. Qian, and F. Yoshida, J. Rare Earth, 18 (4) (2000), pp. 289–292.

    Google Scholar 

  19. M.A. Dudek et al. J. Electron. Mater., (2006) in press.

  20. X. Deng et al., Metall. Mater. Trans. A., 36A (1) (2005), pp. 55–64.

    Article  CAS  Google Scholar 

  21. F. Ochoa, X. Deng, and N. Chawla, J. Electron. Mater., 33 (2004), pp. 1596–1607.

    Article  CAS  Google Scholar 

  22. N. Chawla et al., J. Mater. Sci.-Mater. Electron., 15 (2004), pp. 385–388.

    Article  CAS  Google Scholar 

  23. X. Deng et al., J. Electron. Mater., 32 (2003), pp. 1403–1413.

    Article  CAS  Google Scholar 

  24. K.W. Moon, et al., J. Electron. Mater., 29 (2000), pp. 1122–1136.

    Article  CAS  Google Scholar 

  25. D.R. Frear, Mechanics of Solder Alloy Interconnects (New York: Van Nostran, 1994).

    Google Scholar 

  26. S. Kang and A.K. Sarkhel, J. Electron. Mater., 23 (1994), pp. 701–707.

    CAS  Google Scholar 

  27. J. Glazer, Int. Mater Rev., 40 (1995), pp. 65–93.

    CAS  Google Scholar 

  28. H. Okamoto, editor, Phase Diagrams for Binary Alloys (Materials Park, OH: ASM, 2000).

    Google Scholar 

  29. S. Beer, G. Frommeyer, and E. Schmid, Proc. Conf. Magnesium Alloys and their Applications (Frankfurt: DGM Informationsgesellschaft m.b.H., 1992), pp. 317–324.

    Google Scholar 

  30. Y.N. Malinochka, L.N. Bagnyuk and S.A. Zdorovets, Russ. Metall., 1 (1989), pp. 76–83.

    Google Scholar 

  31. R. Kesri and S. Hamar-Thibault, Zeitschrift fuer Metallkunde, 80 (7) (1989), pp. 502–510.

    CAS  Google Scholar 

  32. K. Ichikawa and S. Ishizuka, T. Jpn. I. Met., 30 (1) (1990), pp. 75–82.

    Google Scholar 

  33. M.A. Dudek and N. Chawla, Mater. Charac., (2006), in preparation.

  34. R.S. Sidhu and N. Chawla, Mater. Charac., 52 (3) (2004), pp. 225–230.

    Article  CAS  Google Scholar 

  35. R.S. Sidhu and N. Chawla, Scripta Mater., 54 (9) (2006), pp. 1627–1631.

    Article  CAS  Google Scholar 

  36. W. Kurz and D.J. Fisher, Fundamentals of Solidification (Switzerland: Trans Tech. Publications Ltd., 1998).

    Google Scholar 

  37. P.G. Harris and K.S. Chagger, Solder. Surf. Mt. Tech., 10 (3) (1998), p. 38.

    Article  CAS  Google Scholar 

  38. R.S. Sidhu, X. Deng, and N. Chawla, Metall. Mater. Trans. A (2006), submitted.

  39. N. Chawla and R.S. Sidhu, J. Mater. Sci.-Mater. Elect. (2006), in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudek, M.A., Sidhu, R.S. & Chawla, N. Novel rare-earth-containing lead-free solders with enhanced ductility. JOM 58, 57–62 (2006). https://doi.org/10.1007/s11837-006-0184-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0184-8

Keywords

Navigation