Skip to main content
Log in

The creep behavior of discontinuously reinforced metal-matrix composites

  • Overview
  • Creep
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Discontinuously reinforced metal-matrix composites (MMCs) have extensive potential for use in structural applications at elevated temperatures. However, any use at high temperatures will require a detailed understanding of the creep characteristics of the MMCs and especially the dependence of the measured creep rates on the magnitudes of the applied stress and the testing temperatures. This report examines these characteristics with special reference to the well-documented creep behavior of conventional solid-solution alloys. It is shown that creep of these MMCs is controlled by deformation in the matrix alloys and this deformation may be interpreted using a similar approach to that already developed for the creep of solid solution alloys. However, additional parameters must be considered in analyzing the creep of MMCs, including the possible presence of a threshold stress and the potential for load transfer and additional substructural strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.G. Langdon, Metall. Mater. Trans. A, 33A (2002), pp. 249–259.

    Article  CAS  Google Scholar 

  2. P. Yavari, F.A. Mohamed and T.G. Langdon, Acta Metall., 29 (1981), pp. 1495–1507.

    Article  CAS  Google Scholar 

  3. F.A. Mohamed and T.G. Langdon, Acta Metall., 22 (1974), pp. 779–788.

    Article  CAS  Google Scholar 

  4. P. Yavari and T.G. Langdon, Acta Metall., 30 (1982), pp. 2181–2196.

    Article  CAS  Google Scholar 

  5. Z. Horita and T.G. Langdon, Proc. 7th Int. Conf. Strength of Metals and Alloys (ICSMA 7), ed. H.J. McQueen et al. (Oxford, England: Pergamon Press, 1985), vol. 1, pp. 797–802.

    Google Scholar 

  6. T.G. Nieh, K. Xia, and T.G. Langdon, J. Eng. Mater. Technol., 110 (1988), pp. 77–82.

    Article  CAS  Google Scholar 

  7. K.-T. Park, E.J. Lavernia, and F.A. Mohamed, Acta Metall., 38 (1990), pp. 2149–2159.

    Article  CAS  Google Scholar 

  8. Y. Ma and T.G. Langdon, Mater. Sci. Eng., A230 (1997), pp. 183–187.

    CAS  Google Scholar 

  9. Y. Li and T.G. Langdon, Acta Mater., 45 (1997). pp. 4797–4806.

    Article  CAS  Google Scholar 

  10. Y. Li and T.G. Langdon, Metall. Mater. Trans., A 29A (1998), pp. 2523–2531.

    Article  CAS  Google Scholar 

  11. J.E. Bird, A.K. Mukherjee, and J.E. Dorn, Quantitative Relation Between Properties and Microstructure, ed. D.G. Brandon and A. Rosen (Jerusalem: Israel Universities Press, 1969), pp. 255–341.

    Google Scholar 

  12. K.-T. Park, E.J. Lavernia, and F.A. Mohamed, Acta Metall., 42 (1994), pp. 667–678.

    Article  CAS  Google Scholar 

  13. J.C. Gibeling and W.D. Nix, Mater. Sci. Eng., 45 (1980), pp. 123–135.

    Article  Google Scholar 

  14. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan, Acta Metall. Mater., 40 (1992), pp. 2045–2052.

    Article  CAS  Google Scholar 

  15. B.Y. Lou et al., Mater. Trans., 43 (2002), pp. 501–509.

    Article  CAS  Google Scholar 

  16. Y. Li and T.G. Langdon, Acta Mater., 46 (1998), pp. 1143–1155.

    Article  CAS  Google Scholar 

  17. J. Cadek et al., High Temp. Mater. Process., 13 (1994), pp. 327–338.

    CAS  Google Scholar 

  18. J. Cadek, H. Oikawa, and V. Šustek, Mater. Sci. Eng., A198 (1995), pp. 9–23.

    Google Scholar 

  19. Y. Li and T.G. Langdon, Scripta Mater., 36 (1997), pp. 1457–1460.

    Article  CAS  Google Scholar 

  20. R. Lagneborg and B. Bergman, Metal Sci., 10 (1976), pp. 20–28.

    Article  CAS  Google Scholar 

  21. A. Kelly and K.N. Street, Proc. R. Soc. (London) A, 328A (1972), pp. 267–282.

    Google Scholar 

  22. A. Kelly and K.N. Street, Proc. R. Soc. (London) A, 328A (1972), pp. 283–293.

    Article  Google Scholar 

  23. Y. Li and T.G. Langdon, Acta Mater., 47 (1999), pp. 3395–3403.

    Article  CAS  Google Scholar 

  24. B.Q. Han and T.G. Langdon, Mater. Sci. Eng., A322 (2002), pp. 73–78.

    CAS  Google Scholar 

  25. H. Li et al., J. Mater. Sci. Lett., 15 (1996), pp. 616–619.

    Article  CAS  Google Scholar 

  26. N. Shi et al., Metall. Mater. Trans. A, 28A (1997), pp. 2741–2753.

    Article  CAS  Google Scholar 

  27. S. Spigarelli et al., Mater. Sci. Eng., A328 (2002), pp. 39–47.

    CAS  Google Scholar 

  28. Z. Lin, Y. Li, and F.A. Mohamed, Mater. Sci. Eng., A332 (2002), pp. 330–342.

    CAS  Google Scholar 

  29. L. Kloc et al., Mater. Sci. Eng., A216 (1996), pp. 161–168.

    CAS  Google Scholar 

  30. L. Kloc et al., Acta Mater., 45 (1997), pp. 529–540.

    Article  CAS  Google Scholar 

  31. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan, Metall. Mater. Trans. A, 27A (1996), pp. 305–316.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact T.G. Langdon, University of Southern California, Departments of Aerospace and Mechanical Engineering and Materials Science, Los Angeles, CA 90089-1453, (213) 740-0491; fax (213) 740-8071; e-mail langdon@usc.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Langdon, T.G. The creep behavior of discontinuously reinforced metal-matrix composites. JOM 55, 15–20 (2003). https://doi.org/10.1007/s11837-003-0187-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-003-0187-7

Keywords

Navigation