Skip to main content
Log in

Nature-Inspired Heuristic Frameworks Trends in Solving Multi-objective Engineering Optimization Problems

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Nowadays, nature-inspired artificial intelligent metaheuristic optimization algorithms (MHOAs) have gained many attentions from researchers all over the world due to their capabilities in solving various decision-making problems. These algorithms are inspired and modelled based on the searching behaviour of animals in real life. This review paper provides in-depth discussions on various challenges and breakthroughs in numerous state-of-the-art nature-inspired artificial intelligence (AI) algorithms in solving multi-objective optimization engineering problems with emphasis on the mathematical modelling and algorithm developments. From conventional analysis such as speeds and accuracies to relatively advanced benchmarks such as complexities and convergence patterns, the comparison criteria of population-based and nature-inspired search mechanisms have evolved in the effort to further enhance the overall performance and reachability of these heuristic algorithms. This paper provides a platform for young readers and new researches who are about to indulge in the realm of various AI optimization techniques. Comprehensive analysis and discussions are presented on various state-of-the-art methods, with possible fields of applications proposed. Suitability of search mechanisms to specific optimization problem categories has also been investigated and presented, with combined or hybrid methods under scrutiny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Guo H, Liu J, Zhuang C (2022) Automatic design for shop scheduling strategies based on hyper-heuristics: a systematic review. Adv Eng Inform 54:101756. https://doi.org/10.1016/j.aei.2022.101756

    Article  Google Scholar 

  2. Liu J, Zhang Z, Liu S, Zhang Y, Wu T (2023) Parallel hyper heuristic algorithm based on reinforcement learning for the corridor allocation problem and parallel row ordering problem. Adv Eng Inform 56(2023):101977. https://doi.org/10.1016/j.aei.2023.101977

    Article  Google Scholar 

  3. Yuan X, Chen J, Zhang N, Ye Q, Li C, Zhu C, Sherman SX (2023) Low-cost federated broad learning for privacy-preserved knowledge sharing in the RIS-aided internet of vehicles. Engineering. https://doi.org/10.1016/j.eng.2023.04.015

    Article  Google Scholar 

  4. Choe WCC, Tan JD, Wang H, Chua CC, Mohammad ASB, Haw CY, Tan CS (2023) Recent advancements in condition monitoring systems for wind turbines: a review. Energy Rep 9:22–27. https://doi.org/10.1016/j.egyr.2023.08.061

    Article  Google Scholar 

  5. Heng Z, Chunjie Y, Youxian S (2023) Intelligent ironmaking optimization service on a cloud computing platform by digital twin. Engineering 7:1274–1281. https://doi.org/10.1016/j.eng.2021.04.022

    Article  Google Scholar 

  6. Fei Wu, Jing X-Y, Zhiyong Wu, Ji Y, Dong X, Luo X, Huang Q, Wang R (2020) Modality-specific and shared generative adversarial network for cross-modal retrieval. Pattern Recogn 104:107335. https://doi.org/10.1016/j.patcog.2020.107335

    Article  Google Scholar 

  7. Tan JD, Dahari M, Koh SP, Koay YY, Abed IA (2017) A new experiential learning electromagnetism-like mechanism for numerical optimization. Expert Syst Appl 86:321–333. https://doi.org/10.1016/j.eswa.2017.06.002

    Article  Google Scholar 

  8. Choe WCC, Tan JD, Bhuiyan MAS, Kang CC, Ariannejad M, Haw CY (2022) Nature-inspired optimization algorithms in solving partial shading problems: a systematic review. Arch Comput Methods Eng 30:223–249. https://doi.org/10.1007/s11831-022-09803-x

    Article  Google Scholar 

  9. Dehghani M, Montazeri Z, Trojovska E, Trojovsky P (2023) Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl-Based Syst 259:110011. https://doi.org/10.1016/j.knosys.2022.110011

    Article  Google Scholar 

  10. Mohammad SKH, Mohammad RH, Mohammad ASB, Tan JD, Minhad KN, Ooi KJA, Sawal HMA, Mamun BIR (2023) Design trends of LC-tank based CMOS ILFD for SHF and EHF transceiver applications. Alex Eng J 67:301–342. https://doi.org/10.1016/j.aej.2022.12.017

    Article  Google Scholar 

  11. Shirajuddin TM, Muhammad NS, Abdullah J (2022) Optimization problems in water distribution systems using Non-dominated Sorting Genetic Algorithm II: an overview. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2022.101932

    Article  Google Scholar 

  12. Choe WCC, Tan JD, Tan JP, Mohammadmahdi A, Kang CC, Samdin SB (2022) Fault detection and anti-icing technologies in wind energy conversion systems: a review. Energy Rep 8:28–33. https://doi.org/10.1016/j.egyr.2022.10.234

    Article  Google Scholar 

  13. Tan JD, Koh SP, Tiong SK, Kharudin A, Koay YY (2018) An electromagnetism-like mechanism algorithm approach for photovoltaic system optimization. Indonesian J Electric Eng Comput Sci 12:333–340. https://doi.org/10.11591/ijeecs.v12.i1.pp333-340

    Article  Google Scholar 

  14. Choe WCC, Tan JD, Wang H, Chua CC, Chua MY, Haw CY, Lai HX (2023) Moth flame optimization for the maximum power point tracking scheme of photvoltaic system under partial shading conditions. Energy Rep 9:374–379. https://doi.org/10.1016/j.egyr.2023.09.026

    Article  Google Scholar 

  15. Koopialipoor M, Ghaleini EN, Tootoonchi H, Jahed AD, Haghighi M, Hedayat A (2019) Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN. Environ Earth Sci. https://doi.org/10.1007/s12665-019-8163-x

    Article  Google Scholar 

  16. de Oliveira S, Bezerra L, Stützle T, Dorigo M, Wanner E, de Souza S (2021) Computational study on ant colony optimization for the traveling salesman problem with dynamic demands. Comput Oper Res. https://doi.org/10.1016/j.cor.2021.105359

    Article  MathSciNet  Google Scholar 

  17. Deng W, Xu J, Zhao H (2019) An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem. IEEE Access 7:20281–20292. https://doi.org/10.1109/ACCESS.2019.2897580

    Article  Google Scholar 

  18. Mahamed GHO, Al-Sharhan S (2019) Improved continuous ant colony optimization algorithms for real-world engineering optimization problems. Eng Appl Artif Intell 85:818–829. https://doi.org/10.1016/j.engappai.2019.08.009

    Article  Google Scholar 

  19. Liu Y, Cao B (2020) A novel ant colony optimization with Levy flight. IEEE Access 8:67205–67213. https://doi.org/10.1109/ACCESS.2020.2985498

    Article  Google Scholar 

  20. Mohsen P, Mohammad BD, Hossein N (2020) MLACO: a multi-label feature selection algorithm based on ant colony optimization. Knowl-Based Syst 192:105285. https://doi.org/10.1016/j.knosys.2019.105285

    Article  Google Scholar 

  21. Zhang D, You X, Liu S, Yang K (2019) Multi-colony ant optimization based on generalized Jaccard Similarity Recommendation Strategy. IEEE Access 7:157303–157317. https://doi.org/10.1109/ACCESS.2019.2949860

    Article  Google Scholar 

  22. Zhao D, Liu L, Yu F, Ali AH, Wang M, Liang G, Khan M, Chen H (2021) Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy. Knowl-Based Syst 216:106510. https://doi.org/10.1016/j.knosys.2020.106510

    Article  Google Scholar 

  23. Xu C, Gordan B, Koopialipoor M, Armaghani DJ, Tahir MM, Zhang X (2019) Improving performance of retaining walls under dynamic conditions developing an optimized ANN based on ant colony optimization technique. IEEE Access 7:94692–94700. https://doi.org/10.1109/ACCESS.2019.2927632

    Article  Google Scholar 

  24. Zhuang Y, Cai M, Li X, Luo X, Yang Q, Fei Wu (2020) The next breakthroughs of artificial intelligence: the interdisciplinary nature of AI. Engineering 6:245–247. https://doi.org/10.1016/j.eng.2020.01.009

    Article  Google Scholar 

  25. Meng Z, Yildiz BS, Li G, Zhong C, Mirjalili S, Yildiz AR (2023) Application of state-of-the-art multiobjective metaheuristic algorithms in reliability-based design optimization: a comparative study. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-023-03639-0

    Article  Google Scholar 

  26. Rehab AI, Ahmed AE, Diego O, Mohamed AE, Lu S (2019) Improved salp swarm algorithm based on particle swarm optimization for feature selection. J Ambient Intell Humaniz Comput 10:3155–3169. https://doi.org/10.1007/s12652-018-1031-9

    Article  Google Scholar 

  27. Zhang X, Liu H, Tu L (2020) A modified particle swarm optimization for multimodal multi-objective optimization. Eng Appl Artif Intell 95:103905. https://doi.org/10.1016/j.engappai.2020.103905

    Article  Google Scholar 

  28. Du W, Ying W, Yang P, Cao X, Yan G, Tang K, Wu D (2020) Network-based heterogeneous particle swarm optimization and its application in UAV communication coverage. IEEE Trans Emerg Top Comput Intell 4:312–323. https://doi.org/10.1109/tetci.2019.2899604

    Article  Google Scholar 

  29. Rajwar K, Deep K, Das S (2023) An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artif Intell Rev 56:13187–13257. https://doi.org/10.1007/s10462-023-10470-y

    Article  Google Scholar 

  30. Li X, Wu X, Xu S, Qing S, Chang P (2019) A novel complex network community detection approach using discrete particle swarm optimization with particle diversity and mutation. Appl Soft Comput 81:105476. https://doi.org/10.1016/j.asoc.2019.05.003

    Article  Google Scholar 

  31. Xue Y, Xue B, Zhang M (2019) Self-adaptive particle swarm optimization for large-scale feature selection in classification. ACM Trans Knowl Discov Data 13:1–27. https://doi.org/10.1145/3340848

    Article  Google Scholar 

  32. Gharehchopogh FS (2023) Quantum-inspired metaheuristic algorithms: comprehensive survey and classifications. Artif Intell Rev 56:5479–5543. https://doi.org/10.1007/s10462-022-10280-8

    Article  Google Scholar 

  33. Al-Sulttani AO, Ahsan A, Rahman A, Nik DNN, Idrus S (2017) Heat transfer coefficients and yield analysis of a double-slope solar still hybrid with rubber scrapers: an experimental and theoretical study. Desalination 407(61):74. https://doi.org/10.1016/j.desal.2016.12.017

    Article  Google Scholar 

  34. Nazari-Heris M, Mohammadi-Ivatloo B, Asadi S, Kim J, Geem Z (2018) Harmony search algorithm for energy system applications: an updated review and analysis. J Exp Theor Artif Intell 31:723–749. https://doi.org/10.1080/0952813x.2018.1550814

    Article  Google Scholar 

  35. Al-Omoush A, Alsewari A, Alamri H, Zamli K (2019) Comprehensive review of the development of the harmony search algorithm and its applications. IEEE Access 7:14233–14245. https://doi.org/10.1109/access.2019.2893662

    Article  Google Scholar 

  36. Abdel-Basset M (2020) Improved harmony search algorithm with chaos for solving definite integral. Int J Oper Res 21:252–261

    MathSciNet  Google Scholar 

  37. Ouyang H, Wu W, Zhang C, Li S, Zou D, Liu G (2018) Improved harmony search with general iteration models for engineering design optimization problems. Soft Comput 23:10225–10260. https://doi.org/10.1007/s00500-018-3579-x

    Article  Google Scholar 

  38. Jaddi N, Abdullah S (2017) A cooperative-competitive master-slave global-best harmony search for ANN optimization and water-quality prediction. Appl Soft Comput 51:209–224. https://doi.org/10.1016/j.asoc.2016.12.011

    Article  Google Scholar 

  39. Mzoughi F, Garrido I, Garrido A, De LSM (2020) Self-adaptive global-best harmony search algorithm-based airflow control of a wells-turbine-based oscillating-water column. Appl Sci 10:4628. https://doi.org/10.3390/app10134628

    Article  Google Scholar 

  40. Gholami J, Ghany K, Zawbaa H (2020) A novel global harmony search algorithm for solving numerical optimizations. Soft Comput 25:2837–2849. https://doi.org/10.1007/s00500-020-05341-5

    Article  Google Scholar 

  41. Zhu Q, Tang X, Li Y, Yeboah MO (2020) An improved differential-based harmony search algorithm with linear dynamic domain. Knowl-Based Syst 187:104809. https://doi.org/10.1016/j.knosys.2019.06.017

    Article  Google Scholar 

  42. Shabani M, Abolghasem MS, Asheri H (2017) Selective refining harmony search: a new optimization algorithm. Expert Syst Appl 81:423–443. https://doi.org/10.1016/j.eswa.2017.03.044

    Article  Google Scholar 

  43. Zhao X, Li R, Hao J, Liu Z, Yuan J (2020) A new differential mutation based adaptive harmony search algorithm for global optimization. Appl Sci 10:2916. https://doi.org/10.3390/app10082916

    Article  Google Scholar 

  44. Zhao H, Wang H, Yongjian Fu, Fei Wu, Li Xi (2021) Memory-efficient class-incremental learning for image classification. IEEE Trans Neural Netw Learn Syst 33:5966–5977. https://doi.org/10.1109/TNNLS.2021.3072041

    Article  Google Scholar 

  45. Hancer E, Xue B, Zhang M, Karaboga D, Akay B (2018) Pareto front feature selection based on artificial bee colony optimization. Inf Sci 422:462–479. https://doi.org/10.1016/j.ins.2017.09.028

    Article  Google Scholar 

  46. Wang H, Wang W, Xiao S, Cui S, Xu M, Zhou X (2020) Improving artificial bee colony algorithm using a new neighbourhood selection mechanism. Inf Sci 527:227–240. https://doi.org/10.1016/j.ins.2020.03.064

    Article  Google Scholar 

  47. Ding Z, Fu K, Deng W, Li J, Zhongrong L (2020) A modified artificial bee colony algorithm for structural damage identification under varying temperature based on a novel objective function. Appl Math Model 88:122–141. https://doi.org/10.1016/j.apm.2020.06.039

    Article  Google Scholar 

  48. Jin Q, Lin N, Zhang Y (2021) K-Means clustering algorithm based on chaotic adaptive artificial bee colony. Algorithms 142:53. https://doi.org/10.3390/a14020053

    Article  MathSciNet  Google Scholar 

  49. Clodomir JSJ, Macedo M, Siqueira H, Gokhale A, Bastos-Filho CJA (2019) A novel binary artificial bee colony algorithm. Futur Gener Comput Syst 98:180–196. https://doi.org/10.1016/j.future.2019.03.032

    Article  Google Scholar 

  50. Aslan S, Badem H, Karaboga D (2019) Improved quick artificial bee colony (iqABC) algorithm for global optimization. Soft Comput. https://doi.org/10.1007/s00500-019-03858-y

    Article  Google Scholar 

  51. Aslan S, Karaboga D, Badem H (2020) A new artificial bee colony algorithm employing intelligent forager forwarding strategies. Appl Soft Comput 96:106656. https://doi.org/10.1016/j.asoc.2020.106656

    Article  Google Scholar 

  52. Zhang F, Kuang K, Chen L, You Z, Shen T, Xiao J, Zhang Y, Chao Wu, Fei Wu, Zhuang Y, Li X (2023) Federated unsupervised representation learning. Front Inf Technol Electron Eng 24(8):1181–1193. https://doi.org/10.1631/FITEE.2200268

    Article  Google Scholar 

  53. Ahmed AM, Rashid TA, Saeed SAM (2020) Cat Swarm Optimization Algorithm: a survey and performance evaluation. Comput Intell Neurosci 2:1–20. https://doi.org/10.1155/2020/4854895

    Article  Google Scholar 

  54. Siqueira H, Santana C, Macedo M, Figueiredo E, Gokhale A, Bastos-Filho C (2020) Simplified binary cat swarm optimization. Integr Comput Aided Eng 28:35–50. https://doi.org/10.3233/ICA-200618

    Article  Google Scholar 

  55. Pappula L, Ghosh D (2018) Cat swarm optimization with normal mutation for fast convergence of multimodal functions. Appl Soft Comput 66:473–491

    Article  Google Scholar 

  56. Aram MA, Tarik AR, Soran AMS (2021) Dynamic cat swarm optimization algorithm for backboard wiring problem. Neural Comput Appl 33:13981–13997. https://doi.org/10.1007/s00521-021-06041-3

    Article  Google Scholar 

  57. Sikkandar H, Thiyagarajan R (2020) Deep learning based facial expression recognition using improved cat swarm optimization. J Ambient Intell Humaniz Comput 12:3037–3053. https://doi.org/10.1007/s12652-020-02463-4

    Article  Google Scholar 

  58. Yan D, Cao H, Yu Y, Wang Y, Yu X (2020) Single-objective/multi-objective cat swarm optimization clustering analysis for data partition. IEEE Trans Autom Sci Eng 17:1633–1646. https://doi.org/10.1109/TASE.2020.2969485

    Article  Google Scholar 

  59. Balaji K, Kiran PS, Kumar MS (2021) An energy efficient load balancing on cloud computing using adaptive cat swarm optimization. Mater Today 2:8. https://doi.org/10.1016/j.matpr.2020.11.106

    Article  Google Scholar 

  60. Gomathy M (2020) Optimal feature selection for speech emotion recognition using enhanced cat swarm optimization algorithm. Int J Speech Technol 24:155–163. https://doi.org/10.1007/s10772-020-09776-x

    Article  Google Scholar 

  61. Zhao M (2018) A novel compact cat swarm optimization based on differential method. Enterprise Inf Syst 14:1–25

    Google Scholar 

  62. Siqueira H, Figueiredo E, Macedo M, Santana CJ, Bastos-Filho CJ, Gokhale AA (2018) Boolean binary cat swarm optimization algorithm. In: Proceedings of the 2018 IEEE Latin American Conference on computational intelligence (LA-CCI), pp 1–6

  63. Bahrami M, Bozorg-Haddad O, Chu X (2017) Cat Swarm Optimization (CSO) Algorithm. In: Studies in computational intelligence, pp 9–18. https://doi.org/10.1007/978-981-10-5221-7_2

  64. Guerrero-Luis M, Valdez F, Castillo O (2021) A review on the cuckoo search algorithm. Stud Comput Intell 940:113–124. https://doi.org/10.1007/978-3-030-68776-2_7

    Article  Google Scholar 

  65. Gao S, Gao Y, Zhang Y, Xu L (2019) Multi-strategy adaptive cuckoo search algorithm. IEEE Access 7:137642–137655. https://doi.org/10.1109/ACCESS.2019.2916568

    Article  Google Scholar 

  66. Zhu X, Wang N (2019) Cuckoo search algorithm with onlooker bee search for modeling PEMFCs using T2FNN. Eng Appl Artif Intell 85:740–753. https://doi.org/10.1016/j.engappai.2019.07.019

    Article  Google Scholar 

  67. Li J, Li Y, Tian S, Xia J (2020) An improved cuckoo search algorithm with self-adaptive knowledge learning. Neural Comput Appl 32:11967–11997. https://doi.org/10.1007/s00521-019-04178-w

    Article  Google Scholar 

  68. Ding J, Wang Q, Zhang Q, Ye Q, Ma Y (2019) A hybrid particle swarm optimization-cuckoo algorithm and its engineering applications. Math Probl Eng. https://doi.org/10.1155/2019/5213759

    Article  Google Scholar 

  69. Kalaipriyan T, Sourabh P, Venkatesan S, Sujatha P, Vengattaraman T (2019) Reinforced cuckoo search algorithm based multimodal optimization. Appl Intell 49:2059–2083. https://doi.org/10.1007/s10489-018-1355-3

    Article  Google Scholar 

  70. Cui Z, Zhang M, Wang H, Cai X, Zhang W (2019) A hybrid many-objective cuckoo search algorithm. Soft Comput 23:10681–10697. https://doi.org/10.1007/s00500-019-04004-4

    Article  Google Scholar 

  71. Garcia J, Yepes V, Marti JV (2020) A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics 8:555. https://doi.org/10.3390/math8040555

    Article  Google Scholar 

  72. Garcia J, Maureira C (2021) A KNN quantum cuckoo search algorithm applied to the multidimensional knapsack problem. Appl Soft Comput 102:107077. https://doi.org/10.1016/j.asoc.2020.107077

    Article  Google Scholar 

  73. Zhao H, Wang H, Yongjian Fu, Fei Wu, Li Xi (2021) Memory-efficient class-incremental learning for image classification. IEEE Trans Neural Netw Learn Syst 33(10):5966–5977. https://doi.org/10.1109/TNNLS.2021.3072041

    Article  Google Scholar 

  74. Peng H, Zeng Z, Deng C, Wu Z (2021) Multi-strategy serial cuckoo search algorithm for global optimization. Knowl-Based Syst 214:106729. https://doi.org/10.1016/j.knosys.2020.106729

    Article  Google Scholar 

  75. Yang X, He X (2017) Why the firefly algorithm works?. In: Nature-inspired algorithms and applied optimization, pp 245–259. https://doi.org/10.1007/9783-319-67669-2_11

  76. Tan JD, Kang CC, Wang H, Ariannejad MM, Lee YK & Cheng KR (2023) Advancements and challenges of information integration in swarm robotics. In: Proceedings of the 2023 IEEE International conference on cybernetics and intelligent systems (CIS) and IEEE Conference on robotics, automation and mechatronics (RAM), pp 89–95. https://doi.org/10.1109/CIS-RAM55796.2023.10370011

  77. Wu J, Wang YG, Burrage K, Tian YC, Lawson B, Ding Z (2020) An improved firefly algorithm for global continuous optimization. Expert Syst Appl 149:113340. https://doi.org/10.1016/j.eswa.2020.113340

    Article  Google Scholar 

  78. He LF, Huang SW (2017) Modified firefly algorithm based multilevel thresholding for colour image segmentation. Neurocomputing 240:152–174

    Article  Google Scholar 

  79. Liu J, Mao Y, Liu X, Li Y (2020) A dynamic adaptive firefly algorithm with globally orientation. Math Comput Simul 174:76–101. https://doi.org/10.1016/j.matcom.2020.02.020

    Article  MathSciNet  Google Scholar 

  80. Hassan BA (2020) CSCF: a chaotic sine cosine firefly algorithm for practical application problems. Neural Comput Appl 33:7011–7030. https://doi.org/10.1007/s00521-020-05474-6

    Article  Google Scholar 

  81. Kumar V, Kumar D (2021) A systematic review on firefly algorithm: past, present, and future. Arch Comput Methods Eng 28:3269–3291. https://doi.org/10.1007/s11831-020-09498-y

    Article  MathSciNet  Google Scholar 

  82. Yang XS (2017) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010), pp 65–74

  83. Al-Betar M, Awadallah M (2018) Island bat algorithm for optimization. Expert Syst Appl 107:126–145. https://doi.org/10.1016/j.eswa.2018.04.024

    Article  Google Scholar 

  84. Bangyal W, Ahmad J, Tayyab H, Pervaiz S (2018) An improved bat algorithm based on novel initialization technique for global optimization problem. Int J Adv Comput Sci Appl 2:8. https://doi.org/10.14569/ijacsa.2018.090723

    Article  Google Scholar 

  85. Rauf HT, Gao J, Almadhor A, Arif M, Nafis MT (2021) Enhanced bat algorithm for COVID-19 short-term forecasting using optimized LSTM. Soft Comput 25:12989–12999. https://doi.org/10.1007/s00500-021-06075-8

    Article  Google Scholar 

  86. Liu Q, Wu L, Xiao W, Wang F, Zhang L (2018) A novel hybrid bat algorithm for solving continuous optimization problems. Appl Soft Comput 73:67–82. https://doi.org/10.1016/j.asoc.2018.08.012

    Article  Google Scholar 

  87. Saji Y, Barkatou M (2021) A discrete bat algorithm based on Levy flights for Euclidean travelling salesman problem. Expert Syst Appl 172:114639. https://doi.org/10.1016/j.eswa.2021.114639

    Article  Google Scholar 

  88. Alsalibi B, Abualigah L, Khader A (2020) A novel bat algorithm with dynamic membrane structure for optimization problems. Appl Intell 51:1992–2017. https://doi.org/10.1007/s10489-020-01898-8

    Article  Google Scholar 

  89. Akila S, Christe SA (2022) A wrapper based binary bat algorithm with greedy crossover for attribute selection. Expert Syst Appl 187:115828. https://doi.org/10.1016/j.eswa.2021.115828

    Article  Google Scholar 

  90. Deb S, Gao X-Z, Tammi K, Kalita K, Mahanta P (2019) Recent studies on chicken swarm optimization algorithm: a review. Artif Intell Rev. https://doi.org/10.1007/s10462-019-09718-3

    Article  Google Scholar 

  91. Kumar D, Pandey M (2022) An optimal load balancing strategy for P2P network using chicken swarm optimization. Peer-to-Peer Netw Appl 15:666–688. https://doi.org/10.1007/s12083-021-01259-3

    Article  Google Scholar 

  92. Marino L (2017) Thinking chickens: a review of cognition, emotion, and behaviour in the domestic chicken. Anim Cogn 20:127–147

    Article  Google Scholar 

  93. Tan JD, Kang CC, Wang H, Ariannejad MM, Lee YK, Cheng KR (2023) Development trend of robotic exoskeletons. In: Proceedings of the 2023 IEEE International conference on cybernetics and intelligent systems (CIS) and IEEE conference on robotics, automation and mechatronics (RAM), pp 114–121. https://doi.org/10.1109/CIS-RAM55796.2023.10370016.

  94. Cui L, Zhang Y, Jiao Y (2021) Robust array beamforming via an improved chicken swarm optimization approach. IEEE Access 9:73182–73193. https://doi.org/10.1109/ACCESS.2021.3081138

    Article  Google Scholar 

  95. Lee C, Zhuo GL (2021) Effective rotor fault diagnosis model using multilayer signal analysis and hybrid genetic binary chicken swarm optimization. Symmetry 13:487. https://doi.org/10.3390/sym13030487

    Article  Google Scholar 

  96. Shi W, Guo Y, Yan S, Yu Y, Luo P, Li J (2018) Optimizing directional reader antennas deployment in UHF RFID localization system by using a MPCSO algorithm. IEEE Sens J 18:5035–5048

    Article  Google Scholar 

  97. Cristin R, Kumar KS, Anbhazhagan P (2021) Severity level classification of brain tumor based on MRI images using fractional-chicken swarm optimization algorithm. Comput J 10:1514–1530. https://doi.org/10.1093/comjnl/bxab057

    Article  MathSciNet  Google Scholar 

  98. Liu Y, Liu Q, Tang Z (2021) A discrete chicken swarm optimization for travelling salesman problem. J Phys Conf Ser 1978:012034

    Article  Google Scholar 

  99. Xing Y, Yue J, Chen C, Cai D, Hu J, Xiang Y (2021) Prediction interval estimation of landslide displacement using adaptive chicken swarm optimization-tuned support vector machines. Appl Intell 51:8466–8483. https://doi.org/10.1007/s10489-021-02337-y

    Article  Google Scholar 

  100. Sobhan Bhuiyan MA, Hossain MR, Hemel MSK, Ibne Reaz M, Minhad KN, Tan JD, Miraz MH (2023) CMOS low noise amplifier design trends towards millimeter-wave IoT sensors. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2023.102368

    Article  Google Scholar 

  101. Kumari N, Dwivedi RK, Bhatt AK, Belwal R (2021) Automated fruit grading using optimal feature selection and hybrid classification by self-adaptive chicken swarm optimization: grading of mango. Neural Comput Appl 34:1285–1306. https://doi.org/10.1007/s00521-021-06473-x

    Article  Google Scholar 

  102. Gu Y, Lu H, Xiang L, Shen W (2022) Adaptive simplified chicken swarm optimization based on inverted S-shaped inertia weight. Comput Netw Artif Intell 31:367–386. https://doi.org/10.1049/cje.2020.00.233

    Article  Google Scholar 

  103. Li J, Lei H, Alavi AH, Wang G-G (2020) Elephant herding optimization: variants, hybrids, and applications. Mathematics 8:1415. https://doi.org/10.3390/math8091415

    Article  Google Scholar 

  104. Chakraborty F, Roy P, Nandi D (2020) Novel chaotic elephant herding optimization for multilevel thresholding of colour image. In: Advances in intelligent systems and computing, pp 281–294. https://doi.org/10.1007/978-981-15-4032-5_27

  105. Li J, Guo L, Li Y, Liu C (2019) Enhancing elephant herding optimization with novel individual updating strategies for large-scale optimization problems. Mathematics 75:395. https://doi.org/10.3390/math7050395

    Article  Google Scholar 

  106. Xu H, Cao Q, Fang C, Fu Y, Su J, Wei S, Bykovyy P (2018) application of elephant herd optimization algorithm based on Levy flight strategy in intrusion detection. In: 2018 IEEE 4th International symposium on wireless systems within the international conferences on intelligent data acquisition and advanced COMPUTING SYSTEMS (IDAACS-SWS). https://doi.org/10.1109/idaacs-sws.2018.8525848

  107. Hakli H (2019) Elephant herding optimization using multi-search strategy for continuous optimization problems. Acad Platf J Eng Sci 7:261–268

    Google Scholar 

  108. Chakraborty F, Roy PK, Nandi D (2019) Oppositional elephant herding optimization with dynamic Cauchy mutation for multilevel image thresholding. Evol Intell 12:445–467

    Article  Google Scholar 

  109. Manikandan VP, Selvaperumal S (2019) A fuzzy-elephant herding optimization technique for maximum power point tracking in the hybrid wind-solar system. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12214

    Article  Google Scholar 

  110. Hakli HB (2020) A new binary variant based on elephant herding optimization algorithm. Neural Comput Appl 32:1

    Article  Google Scholar 

  111. Zhao H, Fu Y, Kang M, Tian Q, Wu F, Li X (2021) Mgsvf: multi-grained slow vs. fast framework for few-shot class-incremental learning. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2021.3133897

    Article  Google Scholar 

  112. Reddy DP, Veera P, Reddy VC, Gowri MT (2017) Whale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems. Renewables 4:3

    Article  Google Scholar 

  113. Tan JD, Koh SP, Au MT, Tiong SK, Ali K (2018) Implementation of voltage optimization for sustainable energy. Indonesian J Electric Eng Comput Sci 12(1):341–347. https://doi.org/10.11591/ijeecs.v12.i1.pp341-347

    Article  Google Scholar 

  114. Feng Y, Deb S, Wang G, Alavi A (2021) Monarch butterfly optimization: a comprehensive review. Expert Syst Appl 168:114418. https://doi.org/10.1016/j.eswa.2020.114418

    Article  Google Scholar 

  115. Feng Y, Yang J, Wu C, Lu M, Zhao XJ (2018) Solving 0–1 knapsack problem by chaotic monarch butterfly optimization algorithm with Gaussian mutation. Memetic Comput 10:135–150

    Article  Google Scholar 

  116. Feng Y, Wang GG, Dong J, Wang L (2018) Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0–1 knapsack problem. Comput Electr Eng 67:454–468

    Article  Google Scholar 

  117. Ates A, Akpamukcu M (2021) Modified monarch butterfly optimization with distribution functions and its application for 3 DOF Hover flight system. Neural Comput Appl 34:3697–3722. https://doi.org/10.1007/s00521-021-06635-x

    Article  Google Scholar 

  118. Hu H, Cai Z, Hu S, Cai Y, Chen J, Huang S (2018) Improving monarch butterfly optimization algorithm with self adaptive population. Algorithms 11:71

    Article  MathSciNet  Google Scholar 

  119. Kumar V, Naresh R (2021) Monarch butterfly optimization-based computational methodology for unit commitment problem. Electric Power Compon Syst 48:2181–2194. https://doi.org/10.1080/15325008.2021.1908458

    Article  Google Scholar 

  120. Feng Y, Deb S, Wang G-G, Alavi AH (2020) Monarch butterfly optimization: a comprehensive review. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.114418

    Article  Google Scholar 

  121. Chen CP, Tiong SK, Tan JD, Koh SP, Fong AYC (2018) Online support vector based gas emission prediction system for generation power plant. J Fundam Appl Sci 10(5S):472–485. https://doi.org/10.4314/jfas.v10i5s.38

    Article  Google Scholar 

  122. Trivedi IN, Jangir P, Kumar A, Jangir N, Totlani R (2018) A novel hybrid PSOWOA algorithm for global numerical functions optimization. In: Advances in computer and computational sciences, pp 53–60

  123. Too J, Mafarja M, Mirjalili S (2021) Spatial bound whale optimization algorithm: an efficient high-dimensional feature selection approach. Neural Comput Appl 33:16229–16250. https://doi.org/10.1007/s00521-021-06224-y

    Article  Google Scholar 

  124. Chakraborty S, Saha AK, Chakraborty R, Saha M (2021) An enhanced whale optimization algorithm for large scale optimization problems. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2021.107543

    Article  Google Scholar 

  125. Kaveh A, Rastegar MM (2018) A hybrid WOA-CBO algorithm for construction site layout planning problem. Sci Iranica 25:1094–1104

    Google Scholar 

  126. Zeng N, Song D, Li H, You Y, Liu Y, Alsaadi FE (2021) A competitive mechanism integrated multi-objective whale optimization algorithm with differential evolution. Neurocomputing 432:170–182. https://doi.org/10.1016/j.neucom.2020.12.065

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend heartfelt gratitude to Xiamen University Malaysia for supporting this study under XMUM Research Fund: XMUMRF/2021-C7/IECE/0020.

Funding

This study was funded by XMUM Research Fund (XMUMRF/2021-C7/IECE/0020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Jian Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C.C.W., Ding, T.J., Ee, C.C.W. et al. Nature-Inspired Heuristic Frameworks Trends in Solving Multi-objective Engineering Optimization Problems. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10090-x

Navigation