Skip to main content
Log in

Machine Learning and Computer Vision Based Methods for Cancer Classification: A Systematic Review

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Cancer remains a substantial worldwide health issue that requires careful and exact classification to plan treatment in its early stages. Classical methods of cancer diagnosis involve lab-based testing using biopsy, and imaging tests. Modern technologies may contribute effectively to speed up the diagnosis of cancer. Machine learning-based algorithms have been more prominent in cancer classification in recent years. These algorithms hold great promise in interpreting complex datasets and applying the learned knowledge to categorize unseen samples for cancer classification. In addition, many computer vision-based algorithms play a vital role in image pre-processing, segmentation, and feature extraction. This review article discusses nine major cancer types: carcinoma, sarcoma, neuroendocrine tumor, melanoma, lymphoma, germ cell tumor, leukemia, brain tumor, and multiple myeloma. We conducted a detailed survey of recent literature. We focused on systems that utilize clinical imaging modalities as input and preprocessing, segmentation, and feature extraction as intermediate stages with machine learning classifier as their concluding stage. We have examined the works that classify cancer as mentioned above types using machine learning algorithms. We have analyzed six prominent machine learning-based algorithms: Support vector machines, decision trees, random forest, Naïve Bayes, logistic regression, and K-nearest neighbors. This work also gives insights into various imaging modalities, such as Computed Tomography scan, histopathological images, dermoscopic images, and their utility in diagnosing cancer. In addition, the paper discusses the performance measures used for evaluating the efficiency of machine learning-based models, including accuracy, sensitivity, specificity, F1-score. We have reviewed various pre-processing and segmentation techniques suitable for clinical image-based cancer classification. This survey also discusses some significant challenges researchers face during cancer classification studies. The main objective of this systematic review is to provide researchers and medical experts with extensive knowledge of the present status of cancer classification with the aid of computer vision and machine learning-based systems. We intend to provide a foundation for enhanced cancer detection and therapy precision using these techniques. This effort eventually contributes to the progression of the field of cancer and the enhancement of patient predictions. In addition, we have recognized a few possible directions for research in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ABCDE:

Asymmetry, irregularity of border, color of Dermoscopy image, diameter, and evolution

ADNI:

Alzheimer’s Disease Neuroimaging Initiative

AI:

Artificial Intelligence

ALL:

Acute Lymphoblastic Leukemia

AS:

Adaptive Snake

AT:

Adaptive Thresholding

AUC:

Area Under Curve

BSI:

Blood Smear Images

CBC:

Complete Blood Count

CCH:

Conventional Color Histogram

C-LS:

Level Set Method of Chan

CNN:

Convolutional Neural Network

CP:

Cholangiocarcinoma Patients

CT:

Computed Tomography

CV:

Computer Vision

DNN:

Deep Neural Network

DT:

Decision Tree

DWT:

Discrete Wavelet Transform

EM:

Expectation–Maximization

EM-LS:

Expectation–Maximization Level Set

FBSM:

Fuzzy-Based Split-And-Merge Algorithm

FNAB:

Fine-Needle Aspiration Biopsy

GA:

Genetic Algorithm

GLCM:

Gray Level Co-Occurrence Matrix

GLDM:

Gray Level Dependence Matrix

GLSZM:

Gray-Level Size Zone Matrix

GNG:

Growing Neural Gas

GVF:

Gradient Vector Flow

GWT:

Gabor Wavelet Transform

HL:

Hodgkin Lymphoma

HOG:

Histogram of Oriented Gradient

HSV:

Hue Saturation Value

K-NN:

K-Nearest Neighbor

KSVM:

Kernal support vector machine

LBG:

Linde Buzo Gray

LBP:

Local Binary Pattern

LDA:

Linear Discriminant Analysis

LR:

Logistic Regression

LTE:

Laws’ Texture Energy

LUNA:

LUng Nodule Analysis

MAP:

Maximum A Posterior

MAS:

Multi Atlas Segmentation

MI:

Moments Invariant

MIAS:

Mammographic Image Analysis Society

ML:

Machine Learning

MM:

Multiple Myeloma

MRF:

Markov Random Fields

MRI:

Magnetic Resonance Imaging

MRMR:

Minimum Redundancy Maximum Relevance

NB:

Naïve Bayes

NCI:

National Cancer Institute

NGTDM:

Neighborhood Grey-Tone Difference Matrix

NHL:

Non-Hodgkin Lymphoma

OASIS:

Open Access Series of Imaging Studies

OBNLM:

Optimized Bayesian Non-Local Means

PCA:

Principal Component Analysis

PDF:

Probability Density Function

PET:

Positron Emission Tomography

PSNR:

Peak Signal-to-Noise Ratio

PSO:

Particle Swarm Optimization

RBC:

Red Blood Cells

RF:

Random Forrest

ROI:

Region Of Interest

SGLDM:

Spatial gray-level dependence matrix

SIFT:

Scale Invariance Feature Transformation

SMOTE:

Synthetic Minority Oversampling Technique

STS:

Soft Tissue Sarcoma

SURF:

Speeded Up Robust Features

SVM:

Support Vector Machine

TBC:

Tumor Border Clarity

TGCA:

The Cancer Genome Atlas

US:

Ultra Sound

UV:

Ultra Violet

WBC:

White Blood Cells

WBCD:

Wisconsin Breast Cancer Diagnostic

WDO:

Wind-Driven Optimization

WHO:

World Health Organization

WNNM:

Weighted Nuclear Norm Minimization

WSM:

Wavelet Sub-Band Coefficient Mixing

µCT:

Micro Computed Tomography

References

  1. WHO (2021) Cancer (WHO INT). https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 25 Oct 2021

  2. Gabriel JA (2007) The biology of cancer. Wiley Online Library 78(2):117–122

    Google Scholar 

  3. De SK (2022) Fundamentals of cancer detection, treatment, and prevention. Wiley, Weinheim

    Book  Google Scholar 

  4. National Cancer Institute (2021) What is cancer? National Cancer Institute. http://www.cancer.gov/cancertopics/cancerlibrary/what-is-cancer. Accessed 9 Sept 2022

  5. Rammurthy D, Mahesh PK (2020) Whale Harris hawks optimization based deep learning classifier for brain tumor detection using MRI images. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2020.08.006

    Article  Google Scholar 

  6. Liu R, Page M, Solheim K et al (2009) Quality of life in adults with brain tumors: current knowledge and future directions. Neuro Oncol 11:330–339

    Article  PubMed  PubMed Central  Google Scholar 

  7. PDQ Adult Treatment Editorial Board (2002) Adult Central Nervous System Tumors Treatment (PDQ®): Patient Version. In: PDQ Cancer Infornation Summary. http://www.ncbi.nlm.nih.gov/pubmed/26389458. Accessed 13 Jul 2021

  8. SEER (2023) Cancer classification—SEER training. The National Cancer Institute. https://training.seer.cancer.gov/disease/categories/classification.html#carcinoma. Accessed 18 Jul 2023

  9. Yetman D (2021) Squamous cell cancer: pictures, symptoms, treatment, and more. https://www.healthline.com/health/squamous-cell-skin-cancer. Accessed 18 Jul 2023

  10. Panigrahi S, Das J, Swarnkar T (2020) Capsule network based analysis of histopathological images of oral squamous cell carcinoma. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2020.11.003

    Article  Google Scholar 

  11. Choudhury SR, Choudhury SR (2018) Germ cell tumors. In: Pediatric surgery: a quick guide to decision-making. Springer, Singapore, pp 275–279

  12. Imbach P (2014) Germ cell tumors. In: Pediatric oncology: a comprehensive guide. Springer, New York, pp 181–189

  13. Tseng CJ, Lu CJ, Chang CC et al (2017) Integration of data mining classification techniques and ensemble learning to identify risk factors and diagnose ovarian cancer recurrence. Artif Intell Med 78:47–54. https://doi.org/10.1016/j.artmed.2017.06.003

    Article  PubMed  Google Scholar 

  14. Kashef A, Khatibi T, Mehrvar A (2020) Informatics in medicine unlocked treatment outcome classification of pediatric acute lymphoblastic leukemia patients with clinical and medical data using machine learning : a case study at MAHAK hospital. Informatics Med Unlocked 20:100399. https://doi.org/10.1016/j.imu.2020.100399

    Article  Google Scholar 

  15. Miller MA (2022) In: Coppola CP, Kennedy Jr AP, Lessin MS, Scorpio RJ (eds) Leukemia BT—pediatric surgery: diagnosis and treatment. Springer, Cham, pp 881–886

  16. Saba T (2020) Recent advancement in cancer detection using machine learning: systematic survey of decades, comparisons and challenges. J Infect Public Health 13:1274–1289. https://doi.org/10.1016/j.jiph.2020.06.033

    Article  PubMed  Google Scholar 

  17. Shawly T, Alsheikhy AA (2022) Biomedical diagnosis of leukemia using a deep learner classifier. Comput Intell Neurosci. https://doi.org/10.1155/2022/1568375

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim EE, Wong FCL (2004) In: Kim EE, Lee M-C, Inoue T, Wong WH (eds) Lymphoma BT—clinical PET: principles and applications. Springer, New York, pp 372–386

  19. Mostafa G, Cathey L, Greene FL (2006) In: Mostafa G, Cathey L, Greene FL (eds) Lymphoma BT—review of surgery: basic science and clinical topics for ABSITE. Springer, New York, pp 184–185

  20. Hendi A, Martinez J-C (2011) In: Hendi A, Martinez JC (eds) Melanoma BT—atlas of skin cancers: practical guide to diagnosis and treatment. Springer, Berlin, pp 77–89

  21. Faiza, Irfan ullah S, Salam A et al (2021) Diagnosing of dermoscopic images using machine learning approaches for melanoma detection. In: 2020 IEEE 23rd international multitopic conference (INMIC), pp 1–5. https://doi.org/10.1109/inmic50486.2020.9318114

  22. Kharazmi P, Aljasser MI, Lui H et al (2017) Automated detection and segmentation of vascular structures of skin lesions seen in dermoscopy, with an application to basal cell carcinoma classification. IEEE J Biomed Heal Informatics 21:1675–1684. https://doi.org/10.1109/JBHI.2016.2637342

    Article  Google Scholar 

  23. Raab MS, Podar K, Breitkreutz I et al (2009) Multiple myeloma. Lancet 374:324–339. https://doi.org/10.1016/S0140-6736(09)60221-X

    Article  PubMed  Google Scholar 

  24. Sherman CD, Calman KC, Eckhardt S et al (1987). In: Sherman CD, Calman KC, Eckhardt S et al (eds) Multiple myeloma BT—manual of clinical oncology. Springer, Berlin, pp 291–294

    Chapter  Google Scholar 

  25. Monfardini S, Brunner K, Crowther D et al (1987). In: Monfardini S, Brunner K, Crowther D et al (eds) Multiple myeloma BT—manual of adult and paediatric medical oncology. Springer, Berlin, pp 177–187

    Chapter  Google Scholar 

  26. Nikolaou DN, Fotopoulos DA, Gialakidi EI, Prassopoulos VK (2018). In: Gouliamos AD, Andreou JA, Kosmidis PA (eds) Neuroendocrine tumors BT—imaging in clinical oncology. Springer, Cham, pp 457–462

    Chapter  Google Scholar 

  27. Yang J, Ren Z, Du X et al (2014) The role of mesenchymal stem/progenitor cells in sarcoma: update and dispute. Stem Cell Investig 1:18

    PubMed  PubMed Central  Google Scholar 

  28. Peng Y, Bi L, Guo Y et al (2019) Deep multi-modality collaborative learning for distant metastases predication in PET-CT soft-tissue sarcoma studies. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS. IEEE, pp 3658–3661

  29. Fatima N, Liu L, Hong S, Ahmed H (2020) Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access 8:150360–150376. https://doi.org/10.1109/ACCESS.2020.3016715

    Article  Google Scholar 

  30. Fass L (2008) Imaging and cancer: a review. Mol Oncol 2:115–152

    Article  PubMed  PubMed Central  Google Scholar 

  31. Naimi H, Adamou-Mitiche ABH, Mitiche L (2015) Medical image denoising using dual tree complex thresholding wavelet transform and Wiener filter. J King Saud Univ Comput Inf Sci 27:40–45. https://doi.org/10.1016/j.jksuci.2014.03.015

    Article  Google Scholar 

  32. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  33. Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  34. Meyer P, Noblet V, Mazzara C, Lallement A (2018) Survey on deep learning for radiotherapy. Comput Biol Med 98:126–146. https://doi.org/10.1016/j.compbiomed.2018.05.018

    Article  PubMed  Google Scholar 

  35. Garg A, Mago V (2021) Role of machine learning in medical research: a survey. Comput Sci Rev 40:100370. https://doi.org/10.1016/j.cosrev.2021.100370

    Article  MathSciNet  Google Scholar 

  36. Yadav A, Badre R (2020) Lung carcinoma detection techniques: a survey. In: Proceedings of 2020 12th international conference on computational intelligence and communication networks (CICN 2020), pp 63–69. https://doi.org/10.1109/CICN49253.2020.9242633

  37. Dildar M, Akram S, Irfan M et al (2021) Skin cancer detection: a review using deep learning techniques. Int J Environ Res Public Health 18:5479

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pandey B, Kumar Pandey D, Pratap Mishra B, Rhmann W (2021) A comprehensive survey of deep learning in the field of medical imaging and medical natural language processing: challenges and research directions. J King Saud Univ Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2021.01.007

    Article  Google Scholar 

  39. Jana E, Subban R, Saraswathi S (2018) Research on skin cancer cell detection using image processing. In: 2017 IEEE international conference on computational intelligence and computing research (ICCIC). https://doi.org/10.1109/ICCIC.2017.8524554

  40. Hemanth G, Janardhan M, Sujihelen L (2019) Design and implementing brain tumor detection using machine learning approach. In: Proceedings of the 2nd international conference on trends in electronics and informatics, ICOEI 2019, April 2019, pp 1289–1294. https://doi.org/10.1109/icoei.2019.8862553

  41. Siar M, Teshnehlab M (2019) Brain tumor detection using deep neural network and machine learning algorithm. In: 2019 9th international conference on computer and knowledge engineering (ICCKE), pp 363–368. https://doi.org/10.1109/ICCKE48569.2019.8964846

  42. Mohd Sagheer SV, George SN (2020) A review on medical image denoising algorithms. Biomed Signal Process Control 61:102036. https://doi.org/10.1016/j.bspc.2020.102036

    Article  Google Scholar 

  43. Saranya C, Priya JG, Jayalakshmi P, Pavithra EH (2021) Brain tumor identification using deep learning. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.555

    Article  PubMed Central  Google Scholar 

  44. Aurora S, Javier S, Pedro AG, Cesar HM (2015) Machine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic images. IEEE Trans Med Imaging 35(4):1036–1045. https://doi.org/10.1109/TMI.2015.2506270

    Article  Google Scholar 

  45. Neel JA (2013) Blood smear basics. NC State College of Veterinary Medicine. Raleigh, North Carolina

  46. Tran T, Kwon OH, Kwon KR et al (2019) Blood cell images segmentation using deep learning semantic segmentation. In: 2018 IEEE Int Conf Electron Commun Eng ICECE 2018, pp 13–16. https://doi.org/10.1109/ICECOME.2018.8644754

  47. Mejia J, Mederos B, Zhao J et al (2018) Reconstruction of positron emission tomography images using gaussian curvature. J Healthc Eng 2018:. https://doi.org/10.1155/2018/4706165

  48. Guo Y, Decazes P, Rouen U De (2020) Deep disentangled representation learning of pet images for lymphoma outcome prediction. In: 2020 IEEE 17th international symposium on biomedical imaging (ISBI), pp 2018–2021

  49. Zhang Z, Han Y (2020) Detection of ovarian tumors in obstetric ultrasound imaging using logistic regression classifier with an advanced machine learning approach. IEEE Access 8:44999–45008. https://doi.org/10.1109/ACCESS.2020.2977962

    Article  Google Scholar 

  50. National Cancer Institute Definition of Biopsy. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/biopsy. Accessed 1 Dec 2021

  51. Banaei N, Moshfegh J, Mohseni-Kabir A et al (2019) Machine learning algorithms enhance the specificity of cancer biomarker detection using SERS-based immunoassays in microfluidic chips. RSC Adv 9:1859–1868. https://doi.org/10.1039/C8RA08930B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burbridge B, Mah E (2017) Undergraduate diagnostic imaging fundamentals. University of Saskatchewan, Distance Education Unit, Saskatoon, p 78

    Google Scholar 

  53. Osama S, Shaban H, Ali AA (2022) Gene reduction and machine learning algorithms for cancer classification based on microarray gene expression data: a comprehensive review. Expert Syst Appl 213:118946

    Article  Google Scholar 

  54. Banerjee N, Das S (2020) Prediction lung cancer in machine learning perspective. In: 2020 International conference on computer science, engineering and applications (ICCSEA) 2020. https://doi.org/10.1109/ICCSEA49143.2020.9132913

  55. Han J, Kamber M, Pei J (2012) Data mining concepts and techniques, 3rd edn. University of Illinois at Urbana-Champaign & Simon Fraser University, Burnaby

    Google Scholar 

  56. Alasadi SA, Bhaya WS (2017) Review of data preprocessing techniques in data mining. J Eng Appl Sci 12:4102–4107

    Google Scholar 

  57. Tehsin S, Zameer S, Saif S (2019) Myeloma cell detection in bone marrow aspiration using microscopic images. In: 2019 11th International conference on knowledge and smart technology, KST 2019. IEEE, pp 57–61

  58. Borsdorf A, Raupach R, Flohr T, Hornegger J (2008) Wavelet based noise reduction in CT-images using correlation analysis. IEEE Trans Med Imaging 27:1685–1703. https://doi.org/10.1109/TMI.2008.923983

    Article  PubMed  Google Scholar 

  59. Adabi S, Ghavami S, Fatemi M, Alizad A (2019) Non-local based denoising framework for in vivo contrast-free ultrasound microvessel imaging. Sensors (Switzerland). https://doi.org/10.3390/s19020245

    Article  PubMed Central  Google Scholar 

  60. Mane S, Shinde S (2018) A method for melanoma skin cancer detection using dermoscopy images. In: 2018 4th international conference on computing communication control and automation (ICCUBEA). IEEE, pp 1–6

  61. Senan EM, Jadhav ME (2021) Analysis of dermoscopy images by using ABCD rule for early detection of skin cancer. Glob Transit Proc 2:1–7

    Article  Google Scholar 

  62. Alagu S, Bagan KB (2021) Computer assisted classification framework for detection of acute myeloid leukemia in peripheral blood smear images BT—innovations in computational intelligence and computer vision. In: Sharma MK, Dhaka VS, Perumal T et al (eds) Innovations in computational intelligence and computer vision. Springer, Singapore, pp 403–410

    Chapter  Google Scholar 

  63. Khaleel HS, Mohd Sagheer SV, Baburaj M, George SN (2018) Denoising of Rician corrupted 3D magnetic resonance images using tensor-SVD. Biomed Signal Process Control 44:82–95. https://doi.org/10.1016/j.bspc.2018.04.004

    Article  Google Scholar 

  64. Sen LJ, Hoppel K (1992) Principal components transformation of multifrequency polarimetric SAR imagery. IEEE Trans Geosci Remote Sens 30:686–696. https://doi.org/10.1109/36.158862

    Article  Google Scholar 

  65. Veta M, Huisman A, Viergever MA et al (2011) Marker-controlled watershed segmentation of nuclei in H&E stained breast cancer biopsy images. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. IEEE, pp 618–621

  66. Eldin SN, Hamdy JK, Adnan GT et al (2021) Deep learning approach for breast cancer diagnosis from microscopy biopsy images. In: 2021 International mobile, intelligent, and ubiquitous computing conference (MIUCC). IEEE, pp 216–222

  67. Jose J, Chacko A, Dhas DAS (2017) Comparative study of different image denoising filters for mammogram preprocessing. In: 2017 International conference on inventive systems and control (ICISC). IEEE, pp 1–6

  68. Htay TT, Maung SS (2018) Early stage breast cancer detection system using glcm feature extraction and k-nearest neighbor (k-NN) on mammography image. In: 2018 18th international symposium on communications and information technologies (ISCIT). IEEE, pp 171–175

  69. Diwakar M, Kumar M (2016) Edge preservation based CT image denoising using Wiener filtering and thresholding in wavelet domain. In: 2016 4th International conference on parallel, distributed and grid computing, PDGC 2016, pp 332–336. https://doi.org/10.1109/PDGC.2016.7913171

  70. Chen H, Zhang Y, Zhang W et al (2017) Low-dose CT denoising with convolutional neural network. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017). IEEE, pp 143–146

  71. Yang W, Zhang H, Yang J et al (2017) Improving low-dose CT image using residual convolutional network. IEEE Access 5:24698–24705. https://doi.org/10.1109/ACCESS.2017.2766438

    Article  Google Scholar 

  72. Liu J, Ma J, Zhang Y et al (2017) Discriminative feature representation to improve projection data inconsistency for low dose CT Imaging. IEEE Trans Med Imaging 36:2499–2509. https://doi.org/10.1109/TMI.2017.2739841

    Article  PubMed  Google Scholar 

  73. Abdullah MF, Sulaiman SN, Osman MK et al (2020) Classification of lung cancer stages from CT scan images using image processing and k-nearest neighbours. In: 2020 11th IEEE control and system graduate research colloquium (ICSGRC). IEEE, pp 68–72

  74. Zhang J, Lin G, Wu L et al (2015) Wavelet and fast bilateral filter based de-speckling method for medical ultrasound images. Biomed Signal Process Control 18:1–10. https://doi.org/10.1016/j.bspc.2014.11.010

    Article  Google Scholar 

  75. Hegde RB, Prasad K, Hebbar H et al (2020) Automated decision support system for detection of leukemia from peripheral blood smear images. J Digit Imaging 33:361–374. https://doi.org/10.1007/s10278-019-00288-y

    Article  PubMed  Google Scholar 

  76. Mohd Sagheer SV, George SN (2019) Denoising of low-dose CT images via low-rank tensor modeling and total variation regularization. Artif Intell Med 94:1–17. https://doi.org/10.1016/j.artmed.2018.12.006

    Article  PubMed  Google Scholar 

  77. Bourouis S, Band SS, Mosavi A et al (2022) Meta-heuristic algorithm-tuned neural network for breast cancer diagnosis using ultrasound images. Front Oncol 12:834028

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lee J-S, Hoppel K (1992) Principal components transformation of multifrequency polarimetric SAR imagery. IEEE Trans Geosci Remote Sens 30:686–696

    Article  Google Scholar 

  79. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14:2091–2106. https://doi.org/10.1109/TIP.2005.859376

    Article  PubMed  Google Scholar 

  80. Randhawa SK, Sunkaria RK, Puthooran E (2019) Despeckling of ultrasound images using novel adaptive wavelet thresholding function. Multidimens Syst Signal Process 30:1545–1561

    Article  Google Scholar 

  81. Xiang H, Huang Y-S, Lee C-H et al (2021) 3-D Res-CapsNet convolutional neural network on automated breast ultrasound tumor diagnosis. Eur J Radiol 138:109608

    Article  PubMed  Google Scholar 

  82. Kumar R, Srivastava R, Srivastava S (2015) Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features. J Med Eng 2015:1–14. https://doi.org/10.1155/2015/457906

    Article  Google Scholar 

  83. Nageswaran S, Arunkumar G, Bisht AK et al (2022) Lung cancer classification and prediction using machine learning and image processing. Biomed Res Int 2022:1755460

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kaur B, Mann KS, Grewal MK (2018) Ovarian cancer stage based detection on convolutional neural network. In: Proceedings of the 2nd international conference on communication and electronics systems, ICCES 2017, pp 855–859

  85. Zhu Y, Green AC, Guo L et al (2020) Machine learning approaches for cancer bone segmentation from micro computed tomography images. In: Proceedings of 2020 23rd international conference on information fusion, FUSION 2020, pp 14–19

  86. Madhupriya G, Guru Narayanan M, Praveen S, Nivetha B (2019) Brain tumor segmentation with deep learning technique. In: Proceedings of the 8th International conference on trends in electronics and informatics, ICOEI 2019 2019, April 2019, pp 758–763. https://doi.org/10.1109/icoei.2019.8862575

  87. Pillai SS, Megalingam RK (2020) Detection and 3D modeling of brain tumor using machine learning and conformal geometric algebra. In: Proceedings of 2020 international conference on communication and signal processing (ICCSP 2020), pp 257–261. https://doi.org/10.1109/ICCSP48568.2020.9182225

  88. Sarkar A, Maniruzzaman M, Ahsan MS et al (2020) Identification and classification of brain tumor from MRI with feature extraction by support vector machine. In: 2020 Int Conf Emerg Technol INCET 2020, vol 2, pp 9–12. https://doi.org/10.1109/INCET49848.2020.9154157

  89. Silveira M, Nascimento JC, Marques JS et al (2009) Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J Sel Top Signal Process 3:35–45. https://doi.org/10.1109/JSTSP.2008.2011119

    Article  Google Scholar 

  90. Goutam D (2015) Blood microscopic images using supervised classifier. In: IEEE Int Conf Eng Technol 2015, pp 1–5

  91. Jha KK, Das P, Dutta HS (2020) FAB classification based leukemia identification and prediction using machine learning. In: 2020 international conference on system, computation, automation and networking (ICSCAN)

  92. Jagadev P, Virani HG (2018) Detection of leukemia and its types using image processing and machine learning. In: Proceedings of international conference on trends in electronics and informatics, ICEI 2017, pp 522–526

  93. Shafique S, Tehsin S, Anas S, Masud F (2019) Computer-assisted acute lymphoblastic leukemia detection and diagnosis. In: 2019 2nd International conference on communication, computing and digital systems, C-CODE 2019. IEEE, pp 184–189

  94. Tosta TAA, Do Nascimento MZ, De Faria PR, Neves LA (2017) Application of evolutionary algorithms on unsupervised segmentation of lymphoma histological images. In: Proceedings of IEEE symposium on computer-based medical systems, pp 89–94

  95. Battula P, Sharma S (2018) Automatic classification of non hodgkin’s lymphoma using histological images: recent advances and directions. In: Proceedings of IEEE 2018 international conference on advances in computing, communication control and networking, ICACCCN 2018. IEEE, pp 634–639

  96. Kaur B, Mann KS, Grewal MK (2017) Ovarian cancer stage based detection on convolutional neural network. In: 2017 2nd International conference on communication and electronics systems (ICCES), pp 855–859

  97. Jahwar AF, Abdulazeez AM (2022) Segmentation and classification for breast cancer ultrasound images using deep learning techniques: a review. In: 2022 IEEE 18th International colloquium on signal processing & applications (CSPA). IEEE, pp 225–230

  98. Vandana BS (2021) Significant feature extraction automated framework for cancer diagnosis from bone histopathology images. In: 2018 international conference on advances in computing, communications and informatics (ICACCI), pp 1046–1051

  99. Li Y, Sun J, Tang CK, Shum HY (2004) Lazy snapping. In: ACM SIGGRAPH 2004 Pap SIGGRAPH 2004, pp 303–308. https://doi.org/10.1145/1186562.1015719

  100. Shen R, Li Z, Zhang L et al (2018) Osteosarcoma patients classification using plain X-rays and metabolomic data. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS, pp 690–693

  101. Sarrafzadeh O, Dehnavi AM (2015) Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing. Adv Biomed Res 4:174–174. https://doi.org/10.4103/2277-9175.163998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kumar D, Jain N, Khurana A et al (2020) Automatic detection of white blood cancer from bone marrow microscopic images using convolutional neural networks. IEEE Access 8:142521–142531. https://doi.org/10.1109/ACCESS.2020.3012292

    Article  Google Scholar 

  103. Meenakshi A, Revathy S (2020) An efficient model for predicting brain tumor using deep learning techniques. In: Proc 5th Int Conf Commun Electron Syst ICCES 2020, pp 1000–1007. https://doi.org/10.1109/ICCES48766.2020.09138029

  104. Alquran H, Mustafa WA, Qasmieh IA et al (2022) Cervical cancer classification using combined machine learning and deep learning approach. Comput Mater Contin 72:5117–5134

    Google Scholar 

  105. Boban BM, Megalingam RK (2020) Lung diseases classification based on machine learning algorithms and performance evaluation. In: Proc 2020 IEEE Int Conf Commun Signal Process ICCSP 2020, pp 315–320. https://doi.org/10.1109/ICCSP48568.2020.9182324

  106. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  Google Scholar 

  107. Patil H, Kothari A, Bhurchandi K (2015) 3-D face recognition: features, databases, algorithms and challenges. Artif Intell Rev 44:393–441. https://doi.org/10.1007/s10462-015-9431-0

    Article  Google Scholar 

  108. Amin J, Sharif M, Raza M et al (2019) Brain tumor detection using statistical and machine learning method. Comput Methods Programs Biomed 177:69–79. https://doi.org/10.1016/j.cmpb.2019.05.015

    Article  PubMed  Google Scholar 

  109. Abbas K, Khan PW, Ahmed KT, Song WC (2019) Automatic brain tumor detection in medical imaging using machine learning. In: ICTC 2019—10th Int Conf ICT Converg ICT Converg Lead Auton Futur, pp 531–536. https://doi.org/10.1109/ICTC46691.2019.8939748

  110. Hameed N, Shabut A, Hossain MA (2019) A computer-aided diagnosis system for classifying prominent skin lesions using machine learning. In: 2018 10th Comput Sci Electron Eng Conf CEEC 2018—proceedings, pp 186–191. https://doi.org/10.1109/CEEC.2018.8674183

  111. Murugan A, Nair SAH, Preethi AAP, Kumar KPS (2021) Diagnosis of skin cancer using machine learning techniques. Microprocess Microsyst 81:103727. https://doi.org/10.1016/j.micpro.2020.103727

    Article  Google Scholar 

  112. Krishna Monika M, Arun Vignesh N, Usha Kumari C et al (2020) Skin cancer detection and classification using machine learning. Materials Today Proceedings 33(2):4266–4270

    Article  Google Scholar 

  113. Waheed Z, Waheed A, Zafar M, Riaz F (2017) An efficient machine learning approach for the detection of melanoma using dermoscopic images. In: Proceedings of 2017 International conference on communication, computing and digital systems, C-CODE 2017, pp 316–319

  114. Pandimeena MR (2020) Computerized images using machine learning, pp 872–879

  115. Kumar P, Udwadia SM (2017) Automatic detection of Acute Myeloid Leukemia from microscopic blood smear Image. In: 2017 International conference on advances in computing, communications and informatics, ICACCI 2017, pp 1803–1808

  116. Modi H (2016) Leukemia detection using digital image processing techniques leukemia detection using digital image processing techniques. Int J Appl Inf Syst 10(1):43–51. https://doi.org/10.5120/ijais2015451461

    Article  MathSciNet  Google Scholar 

  117. Daelemans W (1999) Machine learning approaches. In: van Halteren H (ed) Syntactic wordclass tagging. text, speech and language technology, vol 9. Springer, Dordrecht, pp 285–304

  118. Mandal S, Daivajna V, Rajagopalan V (2019) Machine learning based system for automatic detection of leukemia cancer cell. In: 2019 IEEE 16th India council international conference, INDICON 2019—symposium proceedings. IEEE, pp 2019–2022

  119. Abedy H, Ahmed F, Qaisar Bhuiyan MN et al (2019) Leukemia prediction from microscopic images of human blood cell using HOG feature descriptor and logistic regression. In: International conference on ICT and knowledge Engineering, pp 7–12

  120. Punithavathy K, Ramya MM, Poobal S (2015) Analysis of statistical texture features for automatic lung cancer detection in PET/CT images. In: 2015 International conference on robotics, automation, control and embedded systems (RACE). IEEE, pp 1–5

  121. Amini M, Hajianfar G, Avval AH et al (2022) Overall survival prognostic modelling of non-small cell lung cancer patients using positron emission tomography/computed tomography harmonised radiomics features: the quest for the optimal machine learning algorithm. Clin Oncol 34:114–127

    Article  Google Scholar 

  122. Hu Y, Qiao M, Guo Y et al (2017) Reproducibility of quantitative high-throughput BI-RADS features extracted from ultrasound images of breast cancer. Med Phys 44:3676–3685

    Article  CAS  PubMed  Google Scholar 

  123. Aswathy MA, Jagannath M (2017) Detection of breast cancer on digital histopathology images: present status and future possibilities. Informatics Med Unlocked 8:74–79

    Article  Google Scholar 

  124. Anwar F, Attallah O, Ghanem N, Ismail MA (2020) Automatic breast cancer classification from histopathological images. In: 2019 international conference on advances in the emerging computing technologies (AECT). IEEE, pp 1–6

  125. Vapnik V (1998) The support vector method of function estimation. In: Suykens JAK, Vandewalle J (eds) Nonlinear modeling. Springer, Boston, pp 55–85

    Chapter  Google Scholar 

  126. Shantha Kumar P, Ganesh Kumar P (2013) Performance analysis of brain tumor diagnosis based on soft computing techniques. Am J Appl Sci 11:329–336. https://doi.org/10.3844/ajassp.2014.329.336

    Article  Google Scholar 

  127. Baranwal SK, Jaiswal K, Vaibhav K et al (2020) Performance analysis of brain tumour image classification using CNN and SVM. In: Proc 2nd Int Conf Inven Res Comput Appl ICIRCA 2020, pp 537–542. https://doi.org/10.1109/ICIRCA48905.2020.9183023

  128. Chaplot S, Patnaik LM, Jagannathan NR (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1:86–92. https://doi.org/10.1016/j.bspc.2006.05.002

    Article  Google Scholar 

  129. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A (2020) A comprehensive survey on support vector machine classification: applications, challenges and trends. Neurocomputing 408:189–215. https://doi.org/10.1016/j.neucom.2019.10.118

    Article  Google Scholar 

  130. Shinde AS, Desai VV (2018) Relative investigation of machine learning algorithms for performance analysis on brain MR images. Procedia Comput Sci 143:552–562. https://doi.org/10.1016/j.procs.2018.10.431

    Article  Google Scholar 

  131. Rao CS, Karunakara K (2022) Efficient detection and classification of brain tumor using kernel based SVM for MRI. Multimed Tools Appl 81:7393–7417. https://doi.org/10.1007/s11042-021-11821-z

    Article  Google Scholar 

  132. Bhagat N, Kaur G (2022) MRI brain tumor image classification with support vector machine. Mater Today Proc 51:2233–2244

    Article  Google Scholar 

  133. Vijayarajeswari R, Parthasarathy P, Vivekanandan S, Basha AA (2019) Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform. Meas J Int Meas Confed 146:800–805. https://doi.org/10.1016/j.measurement.2019.05.083

    Article  Google Scholar 

  134. Vijh S, Gaur D, Kumar S (2020) An intelligent lung tumor diagnosis system using whale optimization algorithm and support vector machine. Int J Syst Assur Eng Manag 11:374–384. https://doi.org/10.1007/s13198-019-00866-x

    Article  Google Scholar 

  135. Yuan Y, Ren J, Tao X (2021) Machine learning-based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma. Eur Radiol 31:6429–6437. https://doi.org/10.1007/s00330-021-07731-1

    Article  PubMed  Google Scholar 

  136. Ahammed M, Al MM, Uddin MS (2022) A machine learning approach for skin disease detection and classification using image segmentation. Healthc Anal 2:100122. https://doi.org/10.1016/j.health.2022.100122

    Article  Google Scholar 

  137. Xiong X, Wang J, Hu S et al (2021) Differentiating between multiple myeloma and metastasis subtypes of lumbar vertebra lesions using machine learning-based radiomics. Front Oncol 11:1–11. https://doi.org/10.3389/fonc.2021.601699

    Article  Google Scholar 

  138. Yang X, Stamp M (2021) Computer-aided diagnosis of low grade endometrial stromal sarcoma (LGESS). Comput Biol Med 138:104874. https://doi.org/10.1016/j.compbiomed.2021.104874

    Article  PubMed  Google Scholar 

  139. El Houby EMF (2018) Framework of computer aided diagnosis systems for cancer classification based on medical images. J Med Syst 42:157. https://doi.org/10.1007/s10916-018-1010-x

    Article  PubMed  Google Scholar 

  140. Deepika K, Bodapati JD, Srihitha RK (2019) An efficient automatic brain tumor classification using LBP features and SVM-based classifier BT—proceedings of international conference on computational intelligence and data engineering. In: Chaki N, Devarakonda N, Sarkar A, Debnath NC (eds) Plant long non-coding RNA. Springer, Singapore, pp 163–170

    Google Scholar 

  141. Arasi PRE, Suganthi M (2019) a clinical support system for brain tumor classification using soft computing techniques. J Med Syst 43:144. https://doi.org/10.1007/s10916-019-1266-9

    Article  PubMed  Google Scholar 

  142. Das BK, Dutta HS (2020) GFNB: Gini index-based Fuzzy Naive Bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images. Med Biol Eng Comput 58:2789–2803. https://doi.org/10.1007/s11517-020-02249-y

    Article  PubMed  Google Scholar 

  143. Chaudhary A, Bhattacharjee V (2020) An efficient method for brain tumor detection and categorization using MRI images by K-means clustering & DWT. Int J Inf Technol 12:141–148. https://doi.org/10.1007/s41870-018-0255-4

    Article  Google Scholar 

  144. Gokulalakshmi A, Karthik S, Karthikeyan N, Kavitha MS (2020) ICM-BTD: improved classification model for brain tumor diagnosis using discrete wavelet transform-based feature extraction and SVM classifier. Soft Comput 24:18599–18609. https://doi.org/10.1007/s00500-020-05096-z

    Article  Google Scholar 

  145. Srinivasa Reddy A, Chenna Reddy P (2021) MRI brain tumor segmentation and prediction using modified region growing and adaptive SVM. Soft Comput 25:4135–4148. https://doi.org/10.1007/s00500-020-05493-4

    Article  Google Scholar 

  146. Chahal PK, Pandey S (2021) A hybrid weighted fuzzy approach for brain tumor segmentation using MR images. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06010-w

    Article  Google Scholar 

  147. Meraj T, Rauf HT, Zahoor S et al (2021) Lung nodules detection using semantic segmentation and classification with optimal features. Neural Comput Appl 33:10737–10750. https://doi.org/10.1007/s00521-020-04870-2

    Article  Google Scholar 

  148. Wang X, Dai S, Wang Q et al (2021) Investigation of MRI-based radiomics model in differentiation between sinonasal primary lymphomas and squamous cell carcinomas. Jpn J Radiol 39:755–762. https://doi.org/10.1007/s11604-021-01116-6

    Article  PubMed  Google Scholar 

  149. Ubaldi L, Valenti V, Borgese RF et al (2021) Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples. Phys Med 90:13–22. https://doi.org/10.1016/j.ejmp.2021.08.015

    Article  CAS  PubMed  Google Scholar 

  150. Bansal T, Jindal N (2022) An improved hybrid classification of brain tumor MRI images based on conglomeration feature extraction techniques. Neural Comput Appl 34:9069–9086. https://doi.org/10.1007/s00521-022-06929-8

    Article  Google Scholar 

  151. Rajeev SK, Pallikonda Rajasekaran M, Vishnuvarthanan G, Arunprasath T (2022) A biologically-inspired hybrid deep learning approach for brain tumor classification from magnetic resonance imaging using improved gabor wavelet transform and Elmann-BiLSTM network. Biomed Signal Process Control 78:103949. https://doi.org/10.1016/j.bspc.2022.103949

    Article  Google Scholar 

  152. Vadhnani S, Singh N (2022) Brain tumor segmentation and classification in MRI using SVM and its variants: a survey. Multimed Tools Appl 81:31631–31656. https://doi.org/10.1007/s11042-022-12240-4

    Article  Google Scholar 

  153. Arora G, Dubey AK, Jaffery ZA, Rocha A (2022) Bag of feature and support vector machine based early diagnosis of skin cancer. Neural Comput Appl 34:8385–8392. https://doi.org/10.1007/s00521-020-05212-y

    Article  Google Scholar 

  154. Milara E, Gómez-Grande A, Tomás-Soler S et al (2022) Bone marrow segmentation and radiomics analysis of [18F]FDG PET/CT images for measurable residual disease assessment in multiple myeloma. Comput Methods Programs Biomed 225:107083. https://doi.org/10.1016/j.cmpb.2022.107083

    Article  PubMed  Google Scholar 

  155. Remya Ajai AS, Gopalan S (2020) Analysis of active contours without edge-based segmentation technique for brain tumor classification using SVM and KNN classifiers. Springer, Singapore

    Book  Google Scholar 

  156. Shinde AS, Mahendra BM, Nejakar S et al (2022) Performance analysis of machine learning algorithm of detection and classification of brain tumor using computer vision. Adv Eng Softw 173:103221. https://doi.org/10.1016/j.advengsoft.2022.103221

    Article  Google Scholar 

  157. Ifra AB, Sadaf M (2023) Automatic brain tumor detection using convolutional neural networks. Lecture notes in networks and systems 494:419–427. https://doi.org/10.1007/978-981-19-4863-3_41

    Article  Google Scholar 

  158. Murugan A, Nair SAH, Preethi AAP, Kumar KPS (2021) Diagnosis of skin cancer using machine learning techniques. Microprocess Microsyst. https://doi.org/10.1016/j.micpro.2020.103727

    Article  Google Scholar 

  159. Richter AN, Khoshgoftaar TM (2018) A review of statistical and machine learning methods for modeling cancer risk using structured clinical data. Artif Intell Med 90:1–14. https://doi.org/10.1016/j.artmed.2018.06.002

    Article  PubMed  Google Scholar 

  160. Kotsiantis SB (2013) Decision trees: a recent overview. Artif Intell Rev 39:261–283. https://doi.org/10.1007/s10462-011-9272-4

    Article  Google Scholar 

  161. Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21:660–674

    Article  MathSciNet  Google Scholar 

  162. Kingsford C, Salzberg SL (2008) What are decision trees? Nat Biotechnol 26:1011–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Saba T, Sameh Mohamed A, El-Affendi M et al (2020) Brain tumor detection using fusion of hand crafted and deep learning features. Cogn Syst Res 59:221–230. https://doi.org/10.1016/j.cogsys.2019.09.007

    Article  Google Scholar 

  164. Singh GAP, Gupta PK (2019) Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans. Neural Comput Appl 31:6863–6877. https://doi.org/10.1007/s00521-018-3518-x

    Article  Google Scholar 

  165. Martins AS, Neves LA, de Faria PR et al (2021) A Hermite polynomial algorithm for detection of lesions in lymphoma images. Pattern Anal Appl 24:523–535. https://doi.org/10.1007/s10044-020-00927-z

    Article  Google Scholar 

  166. İlkin S, Gençtürk TH, Kaya Gülağız F et al (2021) hybSVM: Bacterial colony optimization algorithm based SVM for malignant melanoma detection. Eng Sci Technol 24:1059–1071. https://doi.org/10.1016/j.jestch.2021.02.002

    Article  Google Scholar 

  167. Sharif M, Tanvir U, Munir EU et al (2018) Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-018-1075-x

    Article  Google Scholar 

  168. Edalati-rad A, Mosleh M (2019) Improving brain tumor diagnosis using MRI segmentation based on collaboration of beta mixture model and learning automata. Arab J Sci Eng 44:2945–2957. https://doi.org/10.1007/s13369-018-3320-1

    Article  Google Scholar 

  169. Al-qazzaz S, Sun X, Yang H et al (2021) Image classification-based brain tumour tissue segmentation. Multimed Tools Appl 80:993–1008. https://doi.org/10.1007/s11042-020-09661-4

    Article  Google Scholar 

  170. Rani TP, Chellam GH (2021) A novel peak signal feature segmentation process for epileptic seizure detection. Int J Inf Technol 13:423–431. https://doi.org/10.1007/s41870-020-00524-7

    Article  Google Scholar 

  171. Alqazzaz S, Sun X, Nokes LDM et al (2022) Combined features in region of interest for brain tumor segmentation. J Digit Imaging 35:938–946. https://doi.org/10.1007/s10278-022-00602-1

    Article  PubMed  PubMed Central  Google Scholar 

  172. Ho TK (1995) Random decision forests. Proc Int Conf Doc Anal Recognition, ICDAR 1:278–282. https://doi.org/10.1109/ICDAR.1995.598994

    Article  Google Scholar 

  173. Biau G, Scornet E (2016) A random forest guided tour. TEST 25:197–227

    Article  MathSciNet  Google Scholar 

  174. Rehman ZU, Zia MS, Bojja GR et al (2020) Texture based localization of a brain tumor from MR-images by using a machine learning approach. Med Hypotheses 141:109705. https://doi.org/10.1016/j.mehy.2020.109705

    Article  PubMed  Google Scholar 

  175. Belgiu M, Drăguţ L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

    Article  Google Scholar 

  176. Mary Adline Priya M, Joseph Jawhar S (2020) Advanced lung cancer classification approach adopting modified graph clustering and whale optimisation-based feature selection technique accompanied by a hybrid ensemble classifier. IET Image Process 14:2204–2215. https://doi.org/10.1049/iet-ipr.2019.0178

    Article  Google Scholar 

  177. Mishra S, Majhi B, Sa PK (2019) Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed Signal Process Control 47:303–311. https://doi.org/10.1016/j.bspc.2018.08.012

    Article  Google Scholar 

  178. Dhivyaa CR, Sangeetha K, Balamurugan M et al (2020) Skin lesion classification using decision trees and random forest algorithms. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02675-8

    Article  Google Scholar 

  179. Settouti N, Saidi M (2023) Preliminary analysis of explainable machine learning methods for multiple myeloma chemotherapy treatment recognition. Evol Intell. https://doi.org/10.1007/s12065-023-00833-3

    Article  Google Scholar 

  180. Anitha R, Siva Sundhara Raja D (2018) Development of computer-aided approach for brain tumor detection using random forest classifier. Int J Imaging Syst Technol 28:48–53. https://doi.org/10.1002/ima.22255

    Article  Google Scholar 

  181. Murugan A, Nair SAH, Kumar KPS (2019) Detection of skin cancer using SVM, Random Forest and kNN classifiers. J Med Syst 43:269. https://doi.org/10.1007/s10916-019-1400-8

    Article  CAS  PubMed  Google Scholar 

  182. Chen G, Li Q, Shi F et al (2020) RFDCR: Automated brain lesion segmentation using cascaded random forests with dense conditional random fields. Neuroimage 211:116620. https://doi.org/10.1016/j.neuroimage.2020.116620

    Article  PubMed  Google Scholar 

  183. Jena B, Nayak GK, Saxena S (2021) An empirical study of different machine learning techniques for brain tumor classification and subsequent segmentation using hybrid texture feature. Mach Vis Appl 33:6. https://doi.org/10.1007/s00138-021-01262-x

    Article  Google Scholar 

  184. Mirmohammadi P, Ameri M, Shalbaf A (2021) Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier. Phys Eng Sci Med 44:433–441. https://doi.org/10.1007/s13246-021-00993-5

    Article  PubMed  Google Scholar 

  185. Leung KM (2007) Naive bayesian classifier. Polytech Univ Dept Comput Sci Risk Eng 2007:123–156

    Google Scholar 

  186. Ratna Raju A, Pabboju S, Rajeswara Rao R (2020) Brain image classification using dual-tree M-band wavelet transform and Naïve Bayes classifier. Springer, Singapore

    Book  Google Scholar 

  187. Karthiga B, Rekha M (2020) Feature extraction and I-NB classification of CT images for early lung cancer detection. Mater Today Proc 33:3334–3341. https://doi.org/10.1016/j.matpr.2020.04.896

    Article  Google Scholar 

  188. Balakumar K, Naveenkumar G, Umamaheswari S (2022) Improving the performance of leukemia detection using machine learning techniques. In: 2022 3rd International conference on electronics and sustainable communication systems (ICESC). IEEE, pp 867–872

  189. Balaji VR, Suganthi ST, Rajadevi R et al (2020) Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes classifier. Meas J Int Meas Confed 163:107922. https://doi.org/10.1016/j.measurement.2020.107922

    Article  Google Scholar 

  190. Ferreira Junior JR, Koenigkam-Santos M, Cipriano FEG et al (2018) Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput Methods Programs Biomed 159:23–30. https://doi.org/10.1016/j.cmpb.2018.02.015

    Article  PubMed  Google Scholar 

  191. Sunil Babu M, Vijayalakshmi V (2019) An effective approach for sub-acute ischemic stroke lesion segmentation by adopting meta-heuristics feature selection technique along with hybrid naive Bayes and sample-weighted random forest classification. Sens Imaging 20:7. https://doi.org/10.1007/s11220-019-0230-6

    Article  Google Scholar 

  192. Inbarani HH, Azar AT, Jothi G (2020) Leukemia image segmentation using a hybrid histogram-based soft covering rough K-means clustering algorithm. Electronics 9(1):188

    Article  Google Scholar 

  193. Ryali S, Supekar K, Abrams DA, Menon V (2010) Sparse logistic regression for whole-brain classification of fMRI data. Neuroimage 51:752–764. https://doi.org/10.1016/j.neuroimage.2010.02.040

    Article  PubMed  Google Scholar 

  194. Sultana J, Sadaf K, Jilani AK, Alabdan R (2019) Diagnosing breast cancer using support vector machine and multi-classifiers. In: Proc 2019 Int Conf Comput Intell Knowl Econ ICCIKE 2019, pp 449–451. https://doi.org/10.1109/ICCIKE47802.2019.9004356

  195. Ye Z, Sun B, Xiao Z (2020) Machine learning identifies 10 feature miRNAs for lung squamous cell carcinoma. Gene 749:144669. https://doi.org/10.1016/j.gene.2020.144669

    Article  CAS  PubMed  Google Scholar 

  196. Nemat H, Fehri H, Ahmadinejad N et al (2018) Classification of breast lesions in ultrasonography using sparse logistic regression and morphology-based texture features. Med Phys 45:4112–4124. https://doi.org/10.1002/mp.13082

    Article  Google Scholar 

  197. Gajula S, Rajesh V (2022) An MRI brain tumour detection using logistic regression-based machine learning model. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-022-01680-8

    Article  Google Scholar 

  198. de Jesus FM, Yin Y, Mantzorou-Kyriaki E et al (2022) Machine learning in the differentiation of follicular lymphoma from diffuse large B-cell lymphoma with radiomic [18F]FDG PET/CT features. Eur J Nucl Med Mol Imaging 49:1535–1543. https://doi.org/10.1007/s00259-021-05626-3

    Article  PubMed  Google Scholar 

  199. Cinarer G, Emiroglu BG (2019) Classificatin of brain tumors by machine learning algorithms. In: 3rd Int Symp Multidiscip Stud Innov Technol ISMSIT 2019—Proceedings. https://doi.org/10.1109/ISMSIT.2019.8932878

  200. Nabizadeh N, Kubat M (2015) Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput Electr Eng 45:286–301. https://doi.org/10.1016/j.compeleceng.2015.02.007

    Article  Google Scholar 

  201. Jena B, Nayak GK, Saxena S (2022) An empirical study of different machine learning techniques for brain tumor classification and subsequent segmentation using hybrid texture feature. Mach Vis Appl 33:1–16. https://doi.org/10.1007/s00138-021-01262-x

    Article  Google Scholar 

  202. Kalaiyarasi M, Rajaguru H (2022) Performance analysis of ovarian cancer detection and classification for microarray gene data. Biomed Res Int. https://doi.org/10.1155/2022/6750457

    Article  PubMed  PubMed Central  Google Scholar 

  203. Rajpurohit S, Patil S, Choudhary N (2018) Microscopic blood image using image processing. In: 2018 Int Conf Adv Comput Commun Informatics, pp 2359–2363

  204. Gulati S, Bhogal RK (2020) Classification of melanoma from dermoscopic images using machine learning. Smart Innov Syst Technol 159:345–354. https://doi.org/10.1007/978-981-13-9282-5_32

    Article  Google Scholar 

  205. Kaur P, Singh G, Kaur P (2019) Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification. Informatics Med Unlocked 16:100151. https://doi.org/10.1016/j.imu.2019.01.001

    Article  Google Scholar 

  206. Janney JB, Roslin SE (2020) Classification of melanoma from Dermoscopic data using machine learning techniques. Multimed Tools Appl 79:3713–3728. https://doi.org/10.1007/s11042-018-6927-z

    Article  Google Scholar 

  207. Budati AK, Katta RB (2022) An automated brain tumor detection and classification from MRI images using machine learning techniques with IoT. Environ Dev Sustain 24:10570–10584. https://doi.org/10.1007/s10668-021-01861-8

    Article  Google Scholar 

  208. Habib H, Amin R, Ahmed B, Hannan A (2022) Hybrid algorithms for brain tumor segmentation, classification and feature extraction. J Ambient Intell Humaniz Comput 13:2763–2784. https://doi.org/10.1007/s12652-021-03544-8

    Article  Google Scholar 

  209. Dogan S, Barua PD, Baygin M et al (2022) Novel multiple pooling and local phase quantization stable feature extraction techniques for automated classification of brain infarcts. Biocybern Biomed Eng 42:815–828. https://doi.org/10.1016/j.bbe.2022.06.004

    Article  Google Scholar 

Download references

Funding

The authors of the work didn't get any funding, grants, or additional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemprasad Yashwant Patil.

Ethics declarations

Conflict of interest

The authors do not have any conflicting interests related to the subject matter discussed in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukadam, S.B., Patil, H.Y. Machine Learning and Computer Vision Based Methods for Cancer Classification: A Systematic Review. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10065-y

Navigation