Skip to main content
Log in

Improving Brain Tumor Diagnosis Using MRI Segmentation Based on Collaboration of Beta Mixture Model and Learning Automata

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

A Correction to this article was published on 24 April 2019

This article has been updated

Abstract

In this paper, an automatic brain tumor diagnosis system is presented using a new threshold-based segmentation method. The proposed segmentation method is based on collaboration of beta mixture model and learning automata (LA). This segmentation method approximates histogram of a given MR image through mixture of Beta functions whose optimized parameters are determined through LA tool. Each Beta function shows one pixel class, and the threshold values which used for segmentation are obtained via intersection of two adjacent Beta functions. Feature extraction is based on statistical features. Moreover, support vector machine (SVM), K-nearest neighbor (KNN) and decision tree (DT) are applied as binary classifiers. In order to evaluate the performance, the proposed method is analyzed on set of 79 MR images from TCIA dataset and Harvard Medical School. The results of the experiments show that the proposed segmentation method presents superior average values for image similarity indices Dice and Jaccard. Moreover, the best accuracy of the presented brain tumor diagnosis system is obtained using SVM classifier with linear kernel, which is more than 98% in 10-fold cross-validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 24 April 2019

    In the original publication, the affiliation of the author was published with typo error.

References

  1. Wang, W.; Xie, G.: An adaptive and online underwater image processing algorithm implemented on miniature biomimetic robotic fish. IFAC Proc. Vol. 47, 7598–7603 (2014)

    Article  Google Scholar 

  2. Martinez, S.S.; Vazquez, C.O.; Garcia, J.G.; Ortega, J.G.: Quality inspection of machined metal parts using an image fusion technique. Measurement 111, 374–383 (2017)

    Article  Google Scholar 

  3. Akbarizadeh, G.; Tirandaz, Z.; Kooshesh, M.: A new curvelet-based texture classification approach for land cover recognition of SAR satellite images. Malays. J. Comput. Sci. 27, 218–239 (2014)

    Google Scholar 

  4. Modava, M.; Akbarizadeh, G.: A level set based method for coastline detection of SAR images. In: 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA), pp. 253–257 (2017)

  5. Akbarizadeh, G.; Rahmani, M.: A new ensemble clustering method for PolSAR image segmentation. In: 7th Conference on Information and Knowledge Technology (IKT), pp. 1–4 (2015)

  6. Faraji, Z.; Akbarizadeh, G.: A new computer vision algorithm for classification of POLSAR images. In: 7th Conference on Information and Knowledge Technology (IKT), pp. 1–4 (2015)

  7. Ahmadi, N.; Akbarizadeh, G.: Hybrid robust iris recognition approach using iris image pre-processing, two-dimensional Gabor features and multi-layer perceptron neural network/PSO. In: IET Biometrics (2017)

  8. Li, Z.; Zhang, X.; Muller, H.; Zhang, S.: Large-scale retrieval for medical image analytics: a comprehensive review. Med. Image Anal. 43, 66–84 (2018)

    Article  Google Scholar 

  9. Selvanayaki, K.; Karnan, M.: CAD system for automatic detection of brain tumor through magnetic resonance image—a review. Int. J. Eng. Sci. Technol. 2, 5890–5901 (2010)

    Google Scholar 

  10. Logeswari, T.; Karnan, M.: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map. Int. J. Comput. Theory Eng. 2, 591 (2010)

    Article  Google Scholar 

  11. Kabade, M.R.S.; Gaikwad, M.: Segmentation of brain tumour and its area calculation in brain MR images using K-mean clustering and fuzzy c-mean algorithm. Int. J. Comput. Sci. Technol. 4, 5 (2013)

    Google Scholar 

  12. Weishaupt, D.; Köchli, V.D.; Marincek, B.: How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging. Springer, Berlin (2008)

    Google Scholar 

  13. Lefohn, A.E.; Cates, J.E.; Whitaker, R.T.: Interactive, GPU-based level sets for 3D segmentation. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003, Springer, pp. 564–572 (2003)

  14. Georgiadis, P.; Cavouras, D.; Kalatzis, I.; Daskalakis, A.; Kagadis, G.C.; Sifaki, K.; Malamas, M.; Nikiforidis, G.; Solomou, E.: Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features. Comput. Methods Programs Biomed. 89, 24–32 (2008)

    Article  Google Scholar 

  15. Janani, V.; Meena, P.: Image segmentation for tumor detection using fuzzy inference system. Int. J. Comput. Sci. Mob. Comput. (IJCSMC) 2, 244–248 (2013)

    Google Scholar 

  16. Dhaliwal, S.; Jain, A.: A survey on seeded region growing based segmentation algorithms. Int. J. Comput. Sci. Manag. Res. 2, 2814–2817 (2013)

    Google Scholar 

  17. Tang, H.; Wu, E.; Ma, Q.; Gallagher, D.; Perera, G.; Zhuang, T.: MRI brain image segmentation by multi-resolution edge detection and region selection. Comput. Med. Imaging Gr. 24, 349–357 (2000)

    Article  Google Scholar 

  18. Lemieux, L.; Hagemann, G.; Krakow, K.; Woermann, F.G.: Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data. Magn. Reson. Med. 42, 127–135 (1999)

    Article  Google Scholar 

  19. Chih-Chin, L.: A novel image segmentation approach based on particle swarm optimization. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89, 324–327 (2006)

    Google Scholar 

  20. Guo, R.; Pandit, S.: Automatic threshold selection based on histogram modes and a discriminant criterion. Mach. Vis. Appl. 10, 331–338 (1998)

    Article  Google Scholar 

  21. Snyder, W.; Bilbro, G.; Logenthiran, A.; Rajala, S.: Optimal thresholding—a new approach. Pattern Recognit. Lett. 11, 803–809 (1990)

    Article  MATH  Google Scholar 

  22. Chen, S.; Wang, M.: Seeking multi-thresholds directly from support vectors for image segmentation. Neurocomputing 67, 335–344 (2005)

    Article  Google Scholar 

  23. Wang, Y.; Guo, Q.; Zhu, Y.: Medical image segmentation based on deformable models and its applications. In: Deformable Models, Springer, pp. 209–260 (2007)

  24. Beno, M.M.; Valarmathi, I.R.; Swamy, S.M.; Rajakumar, B.R.: Threshold prediction for segmenting tumour from brain MRI scans. Int. J. Imaging Syst. Technol. 24, 129–137 (2014)

    Article  Google Scholar 

  25. El-Dahshan, E.-S.A.; Mohsen, H.M.; Revett, K.; Salem, A.-B.M.: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41, 5526–5545 (2014)

    Article  Google Scholar 

  26. Liao, L.; Zhang, Y.: MRI image segmentation based on fast kernel clustering analysis. Front. Electr. Electron. Eng. China 6, 363–373 (2011)

    Article  Google Scholar 

  27. Singh, A.: Detection of brain tumor in MRI images, using combination of fuzzy c-means and SVM. In: 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), pp. 98–102 (2015)

  28. Ali, H.; Elmogy, M.; El-Daydamony, E.; Atwan, A.: Multi-resolution mri brain image segmentation based on morphological pyramid and fuzzy c-mean clustering. Arab. J. Sci. Eng. 40, 3173–3185 (2015)

    Article  Google Scholar 

  29. Ahmadvand, A.; Kabiri, P.: Multispectral MRI image segmentation using Markov random field model. Signal Image Video Process. 10, 251–258 (2016)

    Article  Google Scholar 

  30. Cabria, I.; Gondra, I.: MRI segmentation fusion for brain tumor detection. Inf. Fusion 36, 1–9 (2017)

    Article  Google Scholar 

  31. Cigaroudy, L.S.; Aghazadeh, N.: A multiphase segmentation method based on binary segmentation method for Gaussian noisy image. Signal Image Video Process. 11, 825–831 (2017)

    Article  MATH  Google Scholar 

  32. Akbarizadeh, G.: Segmentation of SAR satellite images using cellular learning automata and adaptive chains. J. Remote Sens. Technol. 1, 44 (2013)

    Article  Google Scholar 

  33. Rahmani, M.; Akbarizadeh, G.: Unsupervised feature learning based on sparse coding and spectral clustering for segmentation of synthetic aperture radar images. IET Comput. Vis. 9, 629–638 (2015)

    Article  Google Scholar 

  34. Akbarizadeh, G.; Rahmani, M.: Efficient combination of texture and color features in a new spectral clustering method for PolSAR image segmentation. Natl. Acad. Sci. Lett. 40, 117–120 (2017)

    Article  MathSciNet  Google Scholar 

  35. Cuevas, E.; Zaldivar, D.; Pérez-Cisneros, M.: Seeking multi-thresholds for image segmentation with learning automata. Mach. Vis. Appl. 22, 805–818 (2011)

    Article  Google Scholar 

  36. Al-Saleh, A.; El-Zaart, A.; Al-Salman, A.M.: Dot detection of braille images using a mixture of beta distributions. J. Comput. Sci. 7, 1749 (2011)

    Article  Google Scholar 

  37. Bouguila, N.; Ziou, D.; Monga, E.: Practical Bayesian estimation of a finite beta mixture through Gibbs sampling and its applications. Stat. Comput. 16, 215–225 (2006)

    Article  MathSciNet  Google Scholar 

  38. El-Zaart, A.: Skin images segmentation. J. Comput. Sci 6, 217–223 (2010)

    Article  Google Scholar 

  39. Kiefer, J.C.; Lorden, G.: Introduction to Statistical Inference. Springer, New York (1987)

    Book  Google Scholar 

  40. TSetlin, M.: Automaton Theory and Modeling of Biological Systems. Academic Press, New York (1973)

    MATH  Google Scholar 

  41. Narendra, K.S.; Thathachar, M.A.: Learning automata–a survey. IEEE Trans. Syst. Man Cybern. 4, 323–334 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zahiri, S.-H.: Learning automata based classifier. Pattern Recognit. Lett. 29, 40–48 (2008)

    Article  Google Scholar 

  43. Afshar, S.; Mosleh, M.; Kheyrandish, M.: Presenting a new multiclass classifier based on learning automata. Neurocomputing 104, 97–104 (2013)

    Article  Google Scholar 

  44. Howell, M.; Gordon, T.: Continuous action reinforcement learning automata and their application to adaptive digital filter design. Eng. Appl. Artif. Intell. 14, 549–561 (2001)

    Article  Google Scholar 

  45. Najim, K.; Poznyak, A.S.: Learning Automata: Theory and Applications. Elsevier, Amsterdam (2014)

    MATH  Google Scholar 

  46. Narendra, K.S.; Thathachar, M.A.: Learning Automata: An Introduction. Courier Corporation, Chelmsford (2012)

    Google Scholar 

  47. Frost, G.P.: Stochastic optimization of vehicle suspension control systems via learning automata. In: GP Frost (1998)

  48. Candes, E.; Demanet, L.; Donoho, D.; Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861–899 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. El-Zaart, A.; Ziou, D.: Statistical modelling of multimodal SAR images. Int. J. Remote Sens. 28, 2277–2294 (2007)

    Article  Google Scholar 

  50. Thathachar, M.; Sastry, P.S.: Varieties of learning automata: an overview. IEEE Trans. Syst. Man Cybern. Part B Cybern. 32, 711–722 (2002)

    Article  Google Scholar 

  51. Beigy, H.; Meybodi, M.: A new continuous action-set learning automaton for function optimization. J. Frankl. Inst. 343, 27–47 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Dempster, A.P.; Laird, N.M.; Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, Z.; Chen, C.; Sun, J.; Chan, K.L.: EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognit. 36, 1973–1983 (2003)

    Article  MATH  Google Scholar 

  54. Ma, J.; Xu, L.; Jordan, M.I.: Asymptotic convergence rate of the EM algorithm for Gaussian mixtures. Neural Comput. 12, 2881–2907 (2000)

    Article  Google Scholar 

  55. Redner, R.A.; Walker, H.F.: Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26, 195–239 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  56. Park, H.; Ozeki, T.: Singularity and slow convergence of the EM algorithm for gaussian mixtures. Neural Process. Lett. 29, 45–59 (2009)

    Article  Google Scholar 

  57. Xu, L.; Jordan, M.I.: On convergence properties of the EM algorithm for Gaussian mixtures. Neural Comput. 8, 129–151 (1996)

    Article  Google Scholar 

  58. Park, H.; Amari, S.-I.; Fukumizu, K.: Adaptive natural gradient learning algorithms for various stochastic models. Neural Netw. 13, 755–764 (2000)

    Article  Google Scholar 

  59. Gupta, L.; Sortrakul, T.: A Gaussian-mixture-based image segmentation algorithm. Pattern Recognit. 31, 315–325 (1998)

    Article  Google Scholar 

  60. Nabizadeh, N.; Kubat, M.: Brain tumors detection and segmentation in MR images: Gabor wavelet versus statistical features. Comput. Electr. Eng. 45, 286–301 (2015)

    Article  Google Scholar 

  61. Akbarizadeh, G.; Moghaddam, A.E.: Detection of lung nodules in CT scans based on unsupervised feature learning and fuzzy inference. J. Med. Imaging Health Inf. 6, 477–483 (2016)

    Article  Google Scholar 

  62. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  63. Ain, Q.; Jaffar, M.A.; Choi, T.-S.: Fuzzy anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor. Appl. Soft Comput. 21, 330–340 (2014)

    Article  Google Scholar 

  64. Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013)

    Article  Google Scholar 

  65. Harvard Medical School. http://med.harvard.edu/AANLIB/

  66. http://www.fexovi.com/sefexa.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mosleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edalati-rad, A., Mosleh, M. Improving Brain Tumor Diagnosis Using MRI Segmentation Based on Collaboration of Beta Mixture Model and Learning Automata. Arab J Sci Eng 44, 2945–2957 (2019). https://doi.org/10.1007/s13369-018-3320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3320-1

Keywords

Navigation