Skip to main content
Log in

Contemporary Meshfree Methods for Three Dimensional Heat Conduction Problems

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This work aims to be a fairly comprehensive study on the respective performance of several meshfree schemes selected for 3D heat conduction problems. A wide array of such methods is implemented in this paper, two of which are employed in 3D for the first time. These methods are compared in a systematic fashion: First, their ability to approximate the Laplacian operator, the key ingredient of the heat equation, is examined. Synthetic benchmarks as well as a real-world engineering problem where experimental data is available follow. In the interest of reproducibility and knowledge dissemination, the complete source code is made public and can be downloaded from: https://github.com/mroethli/thermal_iwf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://www.google.com/search?q=binvox.

References

  1. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    MATH  Google Scholar 

  2. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Google Scholar 

  3. Limido J, Espinosa C, Salaün M, Lacome J-L (2007) SPH method applied to high speed cutting modelling. Int J Mech Sci 49(7):898–908

    Google Scholar 

  4. Ruttimann N, Buhl S, Wegener K (2010) Simulation of single grain cutting using SPH method. J Mach Eng 10(3), 17–29

    Google Scholar 

  5. Rüttimann N (2012) Simulation of metal cutting processes using meshfree methods. PhD thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20646

  6. Rüttimann N, Roethlin M, Buhl S, Wegener K (2013) Simulation of hexa-octahedral diamond grain cutting tests using the SPH method. Proc CIRP 8:322–327

    Google Scholar 

  7. Röthlin M, Klippel H, Afrasiabi M, Wegener K (2019) Metal cutting simulations using smoothed particle hydrodynamics on the GPU. Int J Adv Manuf Technol 102(9–12):3445–3457

    Google Scholar 

  8. Roethlin M, Klippel H, Afrasiabi M, Wegener K (2019) Meshless single grain cutting simulations on the GPU. Int J Mechatron Manuf Syst (in press)

  9. Afrasiabi M, Roethlin M, Klippel H, Wegener K (2019) Meshfree simulation of metal cutting: an updated Lagrangian approach with dynamic refinement. Int J Mech Sci 160C:451–466

    Google Scholar 

  10. Afrasiabi M, Chatzi E, Wegener K (2018) A particle strength exchange method for metal removal in laser drilling. Proc CIRP 72:1548–1553

    Google Scholar 

  11. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17):1526–1535

    Google Scholar 

  12. Afrasiabi M, Mohammadi S (2009) Analysis of bubble pulsations of underwater explosions by the smoothed particle hydrodynamics method. In: ECCOMAS international conference on particle based methods, Spain

  13. Afrasiabi M, Roethlin M, Wegener K (2018) Thermal simulation in multiphase incompressible flows using coupled meshfree and particle level set methods. Comput Methods Appl Mech Eng 336:667–694

    MathSciNet  MATH  Google Scholar 

  14. Afrasiabi M, Roethlin M, Chatzi E, Wegener K (2018) A robust particle-based solver for modeling heat transfer in multiphase flows. In: 6th European conference on computational mechanics (ECCM-ECFD), UK

  15. Liu M, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    MathSciNet  MATH  Google Scholar 

  16. Fang H, Bao K, Wei J, Zhang H, Wu E, Zheng L (2009) Simulations of droplet spreading and solidification using an improved SPH model. Numer Heat Transf Part A Appl 55(2):124–143

    Google Scholar 

  17. Mihalef V, Metaxas D, Sussman M (2009) Simulation of two-phase flow with sub-scale droplet and bubble effects. In: Computer graphics forum, vol 28, pp 229–238, Wiley Online Library

  18. Randles P, Libersky L (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1):375–408

    MathSciNet  MATH  Google Scholar 

  19. Libersky LD, Petschek A (1991) Smooth particle hydrodynamics with strength of materials. In: Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method. Springer, Berlin, pp 248–257

  20. Johnson GR, Beissel SR (1996) Normalized smoothing functions for SPH impact computations. Int J Numer Methods Eng 39(16):2725–2741

    MATH  Google Scholar 

  21. Johnson GR, Stryk RA, Beissel SR (1996) SPH for high velocity impact computations. Comput Methods Appl Mech Eng 139(1):347–373

    MATH  Google Scholar 

  22. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    MathSciNet  MATH  Google Scholar 

  23. Jun S, Liu WK, Belytschko T (1998) Explicit reproducing kernel particle methods for large deformation problems. Int J Numer Methods Eng 41(1):137–166

    MATH  Google Scholar 

  24. Chen J, Beraun J, Carney T (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46(2):231–252

    MATH  Google Scholar 

  25. Chen J, Beraun J (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190(1):225–239

    MATH  Google Scholar 

  26. Eldredge JD, Leonard A, Colonius T (2002) A general deterministic treatment of derivatives in particle methods. J Comput Phys 180(2):686–709

    MATH  Google Scholar 

  27. Mas-Gallic S, Raviart PA (1986) Particle approximation of convection-diffusion problems. Report of Univ de Pari, vol 6

  28. Brookshaw L (1985) A method of calculating radiative heat diffusion in particle simulations. Proc Astron Soc Aust 6:207–210

    Google Scholar 

  29. Fatehi R, Manzari M (2011) Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Comput Math Appl 61(2):482–498

    MathSciNet  MATH  Google Scholar 

  30. Korzilius S, Schilders W, Anthonissen M (2016) An improved CSPM approach for accurate second-derivative approximations with SPH. J Appl Math Phys 5(01):168

    Google Scholar 

  31. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    MathSciNet  MATH  Google Scholar 

  32. Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys Lett) 19(3):155

    Google Scholar 

  33. Koelman J, Hoogerbrugge P (1993) Dynamic simulations of hard-sphere suspensions under steady shear. EPL (Europhys Lett) 21(3):363

    Google Scholar 

  34. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    MathSciNet  MATH  Google Scholar 

  35. Oñate E, Idelsohn S, Zienkiewicz O (1995) Finite point methods in computational mechanics. Int Center Numer Methods Eng 67:1–36

    Google Scholar 

  36. Onate E, Idelsohn S, Zienkiewicz O, Taylor R, Sacco C (1996) A stabilized finite point method for analysis of fluid mechanics problems. Comput Methods Appl Mech Eng 139(1–4):315–346

    MathSciNet  MATH  Google Scholar 

  37. Onate E, Idelsohn S (1998) A mesh-free finite point method for advective–diffusive transport and fluid flow problems. Comput Mech 21(4–5):283–292

    MathSciNet  MATH  Google Scholar 

  38. Tiwari S, Kuhnert J (2003) Finite pointset method based on the projection method for simulations of the incompressible Navier–Stokes equations. In: Meshfree methods for partial differential equations. Springer, Berlin, pp 373–387

  39. Tiwari S, Kuhnert J (2007) Modeling of two-phase flows with surface tension by finite pointset method (FPM). J Comput Appl Math 203(2):376–386

    MathSciNet  MATH  Google Scholar 

  40. Braun J, Sambridge M (1995) A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376(6542):655

    Google Scholar 

  41. Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43(5):839–887

    MathSciNet  MATH  Google Scholar 

  42. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196

    MathSciNet  MATH  Google Scholar 

  43. Bardenhagen S, Brackbill J, Sulsky D (2000) The material-point method for granular materials. Comput Methods Appl Mech Eng 187(3–4):529–541

    MATH  Google Scholar 

  44. Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5(6):477–496

    Google Scholar 

  45. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    MathSciNet  MATH  Google Scholar 

  46. Atluri S, Zhu T-L (2000) The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics. Comput Mech 25(2–3):169–179

    MATH  Google Scholar 

  47. Fatehi R, Fayazbakhsh M, Manzari M (2008) On discretization of second-order derivatives in smoothed particle hydrodynamics. In: Proceedings of world academy of science, engineering and technology, vol 30, pp 243–246, Citeseer

  48. Graham DI, Hughes JP (2008) Accuracy of SPH viscous flow models. Int J Numer Methods Fluids 56(8):1261–1269

    MathSciNet  MATH  Google Scholar 

  49. Belytschko T, Lu Y, Gu L, Tabbara M (1995) Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32(17–18):2547–2570

    MATH  Google Scholar 

  50. Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG) method. Crest, Kettering

    MATH  Google Scholar 

  51. Shivanian E (2015) Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257

    MathSciNet  MATH  Google Scholar 

  52. Gu Y, Chen W, Zhang B (2015) Stress analysis for two-dimensional thin structural problems using the meshless singular boundary method. Eng Anal Bound Elem 59:1–7

    MathSciNet  MATH  Google Scholar 

  53. Yang C, Li X (2015) Meshless singular boundary methods for biharmonic problems. Eng Anal Bound Elem 56:39–48

    MathSciNet  MATH  Google Scholar 

  54. Shivanian E (2016) On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations. Int J Numer Methods Eng 105(2):83–110

    MathSciNet  MATH  Google Scholar 

  55. Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37(12):1693–1702

    MathSciNet  MATH  Google Scholar 

  56. Shivanian E (2015) Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation. Math Methods Appl Sci 39(7):1820–1835

    MathSciNet  MATH  Google Scholar 

  57. Shivanian E, Jafarabadi A (2017) Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives: a stable scheme based on spectral meshless radial point interpolation. Eng Comput 34(1):77–90

    Google Scholar 

  58. Shivanian E, Jafarabadi A (2017) An improved spectral meshless radial point interpolation for a class of time-dependent fractional integral equations: 2D fractional evolution equation. J Comput Appl Math 325:18–33

    MathSciNet  MATH  Google Scholar 

  59. Li S, Liu WK (2007) Meshfree particle methods. Springer, Belrin

    MATH  Google Scholar 

  60. Deligonul Z, Bilgen S (1984) Solution of the Volterra equation of renewal theory with the Galerkin technique using cubic splines. J Stat Comput Simul 20(1):37–45

    MathSciNet  MATH  Google Scholar 

  61. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396

    MathSciNet  MATH  Google Scholar 

  62. Takeda H, Miyama SM, Sekiya M (1994) Numerical simulation of viscous flow by smoothed particle hydrodynamics. Progr Theor Phys 92(5):939–960

    Google Scholar 

  63. Chaniotis A, Poulikakos D, Koumoutsakos P (2002) Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows. J Comput Phys 182(1):67–90

    MATH  Google Scholar 

  64. Choquin J, Huberson S (1989) Particles simulation of viscous flow. Comput Fluids 17(2):397–410

    Google Scholar 

  65. Cottet G, Mas-Gallic S (1990) A particle method to solve the Navier–Stokes system. Numer Math 57(1):805–827

    MathSciNet  MATH  Google Scholar 

  66. Choquin J, Lucquin-Desreux B (1988) Accuracy of a deterministic particle method for Navier–Stokes equations. Int J Numer Methods Fluids 8(11):1439–1458

    MATH  Google Scholar 

  67. Ploumhans P, Winckelmans G (2000) Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. J Comput Phys 165(2):354–406

    MathSciNet  MATH  Google Scholar 

  68. Liu WK, Jun S, Zhang YF et al (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    MathSciNet  MATH  Google Scholar 

  69. Liu W, Jun S, Li S, Adee J, Belyschko T (1995) Reproducing kernel particle for structural dynamics. Int J Numer Methods Fluid 38:1655–79

    MathSciNet  MATH  Google Scholar 

  70. Liu WK, Jun S, Sihling DT, Chen Y, Hao W (1997) Multiresolution reproducing kernel particle method for computational fluid dynamics. Int J Numer Methods Fluids 24(12):1391–1415

    MathSciNet  MATH  Google Scholar 

  71. Chen J-S, Pan C, Roque C, Wang H-P (1998) A Lagrangian reproducing kernel particle method for metal forming analysis. Comput Mech 22(3):289–307

    MATH  Google Scholar 

  72. Hashemian A, Shodja H (2008) Gradient reproducing kernel particle method. J Mech Mater Struct 3(1):127–152

    MATH  Google Scholar 

  73. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, pp 517–524, ACM

  74. Chen J, Beraun J, Jih C (1999) An improvement for tensile instability in smoothed particle hydrodynamics. Comput Mech 23(4):279–287

    MATH  Google Scholar 

  75. Bonet J, Lok T-S (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180(1):97–115

    MathSciNet  MATH  Google Scholar 

  76. Vila J (1999) On particle weighted methods and smooth particle hydrodynamics. Math Models Methods Appl Sci 9(02):161–209

    MathSciNet  MATH  Google Scholar 

  77. Vila JP (2005) SPH renormalized hybrid methods for conservation laws: applications to free surface flows. In: Meshfree methods for partial differential equations II. Springer, Berlin, pp 207–229

  78. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1):3–47

    MATH  Google Scholar 

  79. Colagrossi A, Antuono M, Le Touzé D (2009) Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model. Phys Rev E 79(5):056701

    Google Scholar 

  80. Brebbia CA, Telles JCF, Wrobel L (2012) Boundary element techniques: theory and applications in engineering. Springer, Berlin

    MATH  Google Scholar 

  81. Nooruddin FS, Turk G (2003) Simplification and repair of polygonal models using volumetric techniques. IEEE Trans Vis Comput Graph 9(2):191–205

    Google Scholar 

Download references

Acknowledgements

All computations were performed at ETH Zürich, at the Institute of Machine Tools and Manufacturing (IWF). The authors would like to enthusiastically thank the Swiss National Science Foundation for the financial support under Grant No. 200021-149436. Also, special thanks go to Prof. Dr. Eldredge for the very useful document he provided, as well as Dr. Simon Züst and Mr. Roman Abderhalden for all their fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Afrasiabi.

Ethics declarations

Funding

This study was funded by the Swiss National Science Foundation (Grant No. 200021-149436).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Note: throughout this section it is assumed that \(1 = \int _{-\infty }^{\infty } W(x-\tilde{x})d\tilde{x}\) holds in all cases. This can be trivially ensured by choosing a normalized kernel, which is one of the “golden rules of SPH” [59]. All constants in front of monomials were dropped in the following sections, i.e. instead of the normal definition of a polynomial:

$$\begin{aligned} P(n)&= \sum _i^N = a_ix^i \end{aligned}$$
(118)

This one is used:

$$\begin{aligned} P(n)&= \sum _i^N = x^i \end{aligned}$$
(119)

This is merely due to convenience and brevity. All proofs could be repeated with the first definition.

Furthermore, all proofs in this section were carried out for one dimension only. It is believed that the proofs would extend to three dimensions. One obvious complication one would face if attempting to construct analogous proofs in 3 dimensions is that the n-th order moment about some kernel \(W(\cdot )\) becomes a tensor of order n instead of a scalar. However, all entries of said tensors are monomials of degree n, such that central argument of the one dimensional proofs still hold.

1.1 Appendix 1: Proof That Reproducing the First \(n+1\) Monomials Exactly Entails Completeness of Order n

Assuming:

$$\begin{aligned} x^i&= \int _{-\infty }^{\infty } \tilde{x}^i W(x-\tilde{x})d\tilde{x} \end{aligned}$$
(120)

for \(i=0 \cdots N\). Then

$$\begin{aligned} \sum _{i=0}^N x^i&= \int _{-\infty }^{\infty } \sum _{i=0}^N \tilde{x}^i W(x-\tilde{x})d\tilde{x} \end{aligned}$$
(121)
$$\begin{aligned}&= \sum _{i=0}^N \int _{-\infty }^{\infty } \tilde{x}^i W(x-\tilde{x})d\tilde{x} \end{aligned}$$
(122)
$$\begin{aligned}&= \sum _{i=0}^N x^i \end{aligned}$$
(123)

1.2 Appendix 2: Proof That Satisfying the First n Moment Conditions entails Reproducing the First n Monomials Exactly

Some auxiliary properties need to be proven beforehand. The first being:

$$\begin{aligned} \begin{pmatrix}R \\ k \end{pmatrix}&= (-1)^k \begin{pmatrix} k-r-1 \\ k\end{pmatrix} \end{aligned}$$
(124)

The proof follows more or less directly from the definition for the binomial coefficient:

$$\begin{aligned} \begin{pmatrix} R \\ k \end{pmatrix}&= \frac{R^{\underline{k}}}{k!} \end{aligned}$$
(125)
$$\begin{aligned}&= \frac{R(R-1)(R-2)\cdots (R-k+1)}{k!} \end{aligned}$$
(126)

Factoring out \((-1)\) and subsequently reversing the order:

$$\begin{aligned} \begin{pmatrix} R \\ k \end{pmatrix}&= (-1)^k\frac{-R(-(R-1))(-(R-2))\cdots (-(R-k+1))}{k!} \end{aligned}$$
(127)
$$\begin{aligned}&= (-1)^k\frac{(k-R-1)(k-R-2) \cdots (k - R - k)}{k!} \end{aligned}$$
(128)

Expanding the last term with a null term (\(+1-1\)):

$$\begin{aligned} \begin{pmatrix} R \\ k \end{pmatrix}&= (-1)^k\frac{(k-R-1)(k-r-2) \cdots (k - R -1 - k+1)}{k!} \end{aligned}$$
(129)
$$\begin{aligned}&= \frac{(k-R-1)^{\underline{k}}}{k!} \end{aligned}$$
(130)
$$\begin{aligned}&= (-1)^k \begin{pmatrix} k-R-1 \\ k \end{pmatrix} \end{aligned}$$
(131)

The second property needed reads:

$$\begin{aligned} \sum _{k=0}^n \begin{pmatrix} R + k \\ k \end{pmatrix}&= \begin{pmatrix} R + n + 1 \\ n \end{pmatrix} \end{aligned}$$
(132)

A proof by induction follows:

  • The base case (\(n=0\)) is trivial:

    $$\begin{aligned} \begin{pmatrix}R \\ 0\end{pmatrix} = \begin{pmatrix}R+1 \\ 0\end{pmatrix} = 1 \end{aligned}$$
    (133)
  • The induction hypothesis reads: if

    $$\begin{aligned} \sum _{k=0}^n \begin{pmatrix} R + k \\ k \end{pmatrix}&= \begin{pmatrix} R + n + 1 \\ n \end{pmatrix} \end{aligned}$$
    (134)

    holds, then

    $$\begin{aligned} \sum _{k=0}^{n+1} \begin{pmatrix} R + k \\ k \end{pmatrix}&= \begin{pmatrix} R + n + 2 \\ n+1 \end{pmatrix} \end{aligned}$$
    (135)

    hold as well.

  • Beginning the induction step by consuming the uppermost index of the sum:

    $$\begin{aligned} \sum _{k=0}^{n+1} \begin{pmatrix} R + k \\ k \end{pmatrix}&= \sum _{k=0}^n \begin{pmatrix} R + k \\ k \end{pmatrix} + \begin{pmatrix} R+n+1 \\ n + 1\end{pmatrix} \end{aligned}$$
    (136)

    Using the induction hypothesis

    $$\begin{aligned} \sum _{k=0}^{n+1} \begin{pmatrix} R + k \\ k \end{pmatrix}&= \begin{pmatrix} R + n + 1 \\ n \end{pmatrix} + \begin{pmatrix} R + n + 1 \\ n + 1\end{pmatrix} \end{aligned}$$
    (137)

    And finally applying Pascal’s rule:

    $$\begin{aligned} \sum _{k=0}^{n+1} \begin{pmatrix} R + k \\ k \end{pmatrix}&= \begin{pmatrix} R + n + 2 \\ n + 1\end{pmatrix} \end{aligned}$$
    (138)

The first and second properties can now be used to prove a third one:

$$\begin{aligned} \sum _{k=0}^{n+1} (-1)^k \begin{pmatrix} R \\ k \end{pmatrix}&= (-1)^n \begin{pmatrix} r-1 \\ n \end{pmatrix} \end{aligned}$$
(139)

Applying the property number one, followed by property number two, then one again:

$$\begin{aligned} \sum _{k=0}^{n+1} (-1)^k \begin{pmatrix} R \\ k \end{pmatrix}&= \sum _{k=0}^{n+1} \begin{pmatrix} k - R - 1 \\ k \end{pmatrix} \end{aligned}$$
(140)
$$\begin{aligned}&= \begin{pmatrix} -R + n \\ n \end{pmatrix} \end{aligned}$$
(141)
$$\begin{aligned}&= (-1)^n \begin{pmatrix}R-1 \\ n\end{pmatrix} \end{aligned}$$
(142)

The property is not quite in the form needed later later yet. In fact, the special case of \(R=n\) with shifted boundaries is required. Shifting the top boundary:

$$\begin{aligned} \sum _{k=0}^n (-1)^k \begin{pmatrix} R \\ k \end{pmatrix}&= (-1)^n \begin{pmatrix} R-1 \\ n \end{pmatrix} \end{aligned}$$
(143)
$$\begin{aligned} \sum _{k=0}^{n-1} (-1)^k \begin{pmatrix} R \\ k \end{pmatrix}&= (-1)^{n-1} \begin{pmatrix} R-1 \\ n-1 \end{pmatrix} \end{aligned}$$
(144)

setting \(R = n\):

$$\begin{aligned} \sum _{k=0}^{n-1} (-1)^k \begin{pmatrix} n \\ k \end{pmatrix}&= (-1)^{n-1} \begin{pmatrix} n-1 \\ n-1 \end{pmatrix} \end{aligned}$$
(145)
$$\begin{aligned} \sum _{k=0}^{n-1} (-1)^k \begin{pmatrix} n \\ k \end{pmatrix}&= -(-1)^{n} \end{aligned}$$
(146)

and finally shifting the lower boundary (and moving the one term to the right-hand side):

$$\begin{aligned} \sum _{k=1}^{n-1} (-1)^k \begin{pmatrix} n \\ k \end{pmatrix}&= -(-1)^{n} -1 \end{aligned}$$
(147)

On to the statement actually to be proven: \(0 = \int \! (x-\tilde{x})^n W(x-\tilde{x}){{\mathrm {d}}}\tilde{x}\) implies that \(x^n = \int \! \tilde{x}^n W(x-\tilde{x}){{\mathrm {d}}}\tilde{x}\) for \(n>1\). The proof is again to be by induction.

  • The base case (\(n=1\)) is quite straightforward:

    $$\begin{aligned} 0&= \int \! (x-\tilde{x}) W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (148)
    $$\begin{aligned}&= \int \! x W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} - \int \! \tilde{x} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (149)
    $$\begin{aligned}&= x \underbrace{\int \! W(x-\tilde{x}){{\mathrm {d}}}\tilde{x}}_{1} - \int \! \tilde{x} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (150)

    Thus (underbraced term by moment condition number 1, which can be trivially ensured using a normalized W):

    $$\begin{aligned} x = \int \! \tilde{x} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (151)
  • The induction hypothesis reads: if \(0 = \int \! (x-\tilde{x})^{q-1} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x}\) implies \(x^{q-1} = \int \! \tilde{x}^{q-1} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x}\) for \(q=1\cdots n-1\), then \(0 = \int \! (x-\tilde{x})^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x}\) implies \(x^{n} = \int \! \tilde{x}^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x}\).

  • The induction step starts by expanding the binomial term in the moment condition into Pascal’s triangle:

    $$\begin{aligned} 0&= \int \! (x-\tilde{x})^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (152)
    $$\begin{aligned}&= \int \! \sum _{k=0}^n \begin{pmatrix}n \\ k \end{pmatrix} x^{n-k}(-\tilde{x})^k W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (153)

    The first and last term of the sum is now consumed:

    $$\begin{aligned} 0 =&\int \! x^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (154)
    $$\begin{aligned}&+ \int \! \sum _{k=1}^{n-1} \begin{pmatrix}n \\ k \end{pmatrix} x^{n-k}(-\tilde{x})^k W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (155)
    $$\begin{aligned}&+ \int \! (-\tilde{x})^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (156)

    Moving the integral into the the summation as far as possible:

    $$\begin{aligned} 0 =&\int \! x^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (157)
    $$\begin{aligned}&+ \sum _{k=1}^{n-1} \begin{pmatrix}n \\ k \end{pmatrix} x^{n-k}\int \! (-\tilde{x})^k W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (158)
    $$\begin{aligned}&+ \int \! (-\tilde{x})^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (159)

    Since \(k\le n-1\) the induction hypothesis \(\int (-\tilde{x})^k W(x-\tilde{x}) {{\mathrm {d}}}\tilde{x} = - x^k\) can be applied:

    $$\begin{aligned} 0 =&\int \! x^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (160)
    $$\begin{aligned}&+ \sum _{k=1}^{n-1} \begin{pmatrix}n \\ k \end{pmatrix} x^{n-k}(-x)^k \end{aligned}$$
    (161)
    $$\begin{aligned}&+ \int \! (-\tilde{x})^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (162)

    Using that \(x^{n-k}(-x)^k = (-1)^k x^n\):

    $$\begin{aligned} 0 =&\int \! x^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (163)
    $$\begin{aligned}&+ x^n\sum _{k=1}^{n-1} \begin{pmatrix}n \\ k \end{pmatrix} (-1)^k \end{aligned}$$
    (164)
    $$\begin{aligned}&+ \int \! (-\tilde{x})^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (165)

    Using the (manipulated) third property from above:

    $$\begin{aligned} 0 =&\int \! x^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (166)
    $$\begin{aligned}&+ x^n (-(-1)^n-1) \end{aligned}$$
    (167)
    $$\begin{aligned}&+ \int \! (-\tilde{x})^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (168)

    The proof is readily completed:

    $$\begin{aligned} 0 =&x^{n} \underbrace{\int \! W(x-\tilde{x}){{\mathrm {d}}}\tilde{x}}_{1} + x^n (-(-1)^n-1)\nonumber \\&+ \int \! (-\tilde{x})^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (169)
    $$\begin{aligned} 0 =&x^n + x^n (-(-1)^n) - x^n + \int \! (-\tilde{x})^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (170)
    $$\begin{aligned} x^n =&\int \! (\tilde{x})^{n} W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} \end{aligned}$$
    (171)

1.3 Appendix 3: Proof That Completeness of Order n Ensures a Convergence Rate of Order \(n+1\)

To proof is started with a Taylor approximation of some function f(.) about a point x:

$$\begin{aligned} f(\tilde{x}) = f(x) + (\tilde{x}-x)\cdot f'(x) + \frac{1}{2}(\tilde{x}-x)^2\cdot f''(x) + \cdots \end{aligned}$$
(172)

Multiplying this by some kernel function \(W(x-\tilde{x})\) and integrate over the whole domain:

$$\begin{aligned} \int \!f(\tilde{x}) W(x-\tilde{x}) {{\mathrm {d}}}\tilde{x} =&\int \! W(x-\tilde{x})f(x) {{\mathrm {d}}}\tilde{x} \end{aligned}$$
(173)
$$\begin{aligned}&+ \int \! (\tilde{x}-x) \cdot W(x-\tilde{x})\cdot f'(x) {{\mathrm {d}}}\tilde{x} \end{aligned}$$
(174)
$$\begin{aligned}&+ \frac{1}{2!} \int \! (\tilde{x}-x)^2 \cdot W(x-\tilde{x})\cdot f''(x){{\mathrm {d}}}\tilde{x} + \cdots \end{aligned}$$
(175)

Realizing that the derivative terms are not bound by the differential \({{\mathrm {d}}}\tilde{x}\):

$$\begin{aligned} \int \!f(\tilde{x}) W(x-\tilde{x}) {{\mathrm {d}}}\tilde{x} =&\int \! W(x-\tilde{x})f(x) {{\mathrm {d}}}\tilde{x} \end{aligned}$$
(176)
$$\begin{aligned}&+ f'(x)\cdot \int \! (\tilde{x}-x) \cdot W(x-\tilde{x}) {{\mathrm {d}}}\tilde{x} \end{aligned}$$
(177)
$$\begin{aligned}&+ \frac{1}{2!} f''(x)\cdot \int \! (\tilde{x}-x)^2 \cdot W(x-\tilde{x}){{\mathrm {d}}}\tilde{x} + \cdots \end{aligned}$$
(178)

The familiar moment conditions are found again on the right-hand side (albeit in negative form). It is apparent that if the first n moment conditions hold, the above expression (which is equal to the function approximation by a kernel function) is exact of to a term in the order of \(\mathcal {O}((x-\tilde{x})^{n+1})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrasiabi, M., Roethlin, M. & Wegener, K. Contemporary Meshfree Methods for Three Dimensional Heat Conduction Problems. Arch Computat Methods Eng 27, 1413–1447 (2020). https://doi.org/10.1007/s11831-019-09355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09355-7

Navigation