Skip to main content

Solving 2D/3D Heat Conduction Problems by Combining Topology Optimization and Anisotropic Mesh Adaptation

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Abstract

Topology optimization was recently combined with anisotropic mesh adaptation to solve 3D minimum compliance problems in a fast and robust way. This paper demonstrates that the methodology is also applicable to 2D/3D heat conduction problems. Nodal design variables are used and the objective function is chosen such that the problem is self-adjoint. There is no way around the book keeping associated with mesh adaptation, so the whole 5527 line MATLAB code is published (https://github.com/kristianE86/trullekrul). The design variables as well as the sensitivities have to be interpolated between meshes, but MATLAB does not support interpolation on simplex meshes and it is thus handled as part of the local operations in the mesh adaptation. This functionality is available for nodal as well as element-wise design variables, but we have found the former to be superior. Results are shown for various discretizations demonstrating that the objective function converges, but comparison to optimizations with fixed meshes indicate that the use of mesh adaptation results in worse objective functions, particularly in 3D. Out of the 5018 statements only 100 is used for the actual optimization loop, 100 for 2D/3D geometry/mesh setup and 50 for the forward problem. It is thus feasible to use the script as a platform for solving other problems or for investigating the details of the methodology itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    on a Intel Xeon E5-2680 (2.80 GHz).

References

  1. Clausen, A., Aage, N., Sigmund, O.: Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2(2), 250–257 (2016)

    Article  Google Scholar 

  2. Meisel, N., Gaynor, A., Williams, C., Guest, J.: Multiple-material topology optimization of compliant mechanisms created via polyjet 3d printing. In: 24th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference (2013)

    Google Scholar 

  3. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin (2013)

    Google Scholar 

  4. Gersborg-Hansen, A., Bendsøe, M.P., Sigmund, O.: Topology optimization of heat conduction problems using the finite volume method. Struct. Multi. Optim. 31(4), 251–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alexandersen, J., Sigmund, O., Aage, N.: Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int. J. Heat Mass Transfer 100, 876–891 (2016)

    Article  Google Scholar 

  6. Aage, N., Andreassen, E., Lazarov, B.S.: Topology optimization using PETsc: an easy-to-use, fully parallel, open source topology optimization framework. Struct. Multi. Optim. 51(3), 565–572 (2015)

    Article  MathSciNet  Google Scholar 

  7. Christiansen, A.N., Bærentzen, J.A., Nobel-Jørgensen, M., Aage, N., Sigmund, O.: Combined shape and topology optimization of 3d structures. Comput. Graph. 46, 25–35 (2015)

    Article  Google Scholar 

  8. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O.: Efficient topology optimization in matlab using 88 lines of code. Struct. Multi. Optim. 43(1), 1–16 (2011)

    Article  MATH  Google Scholar 

  9. Suresh, K.: A 199-line matlab code for pareto-optimal tracing in topology optimization. Struct. Multi. Optim. 42(5), 665–679 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mesri, Y., Zerguine, W., Digonnet, H., Silva, L., Coupez, T.: Dynamic parallel adaption for three dimensional unstructured meshes: application to interface tracking. In: Proceedings of the 17th International Meshing Roundtable, pp. 195–212. Springer (2008)

    Google Scholar 

  11. Alauzet, F., Frey, P.J., George, P.-L., Mohammadi, B.: 3d transient fixed point mesh adaptation for time-dependent problems: application to CFD simulations. J. Comput. Phys. 222(2), 592–623 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Belhamadia, Y., Fortin, A., Chamberland, É.: Three-dimensional anisotropic mesh adaptation for phase change problems. J. Comput. Phys. 201(2), 753–770 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guénette, R., Fortin, A., Kane, A., Hétu, J.-F.: An adaptive remeshing strategy for viscoelastic fluid flow simulations. J. Newton. Fluid Mech. 153(1), 34–45 (2008)

    Article  MATH  Google Scholar 

  14. Belhamadia, Y., Fortin, A., Bourgault, Y.: On the performance of anisotropic mesh adaptation for scroll wave turbulence dynamics in reaction-diffusion systems. J. Comput. Appl. Math. 271, 233–246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jensen, K.E.: Solving stress and compliance constrained volume minimization using anisotropic mesh adaptation, the method of moving asymptotes and a global p-norm. Struct. Multi. Optim. 54(4), 1–11 (2016)

    Article  MathSciNet  Google Scholar 

  16. Jensen, K.E.: Anisotropic mesh adaptation and topology optimization in three dimensions. J. Mech. Des. 138(6), 061401 (2016)

    Article  Google Scholar 

  17. Jensen, K.E.: Details of tetrahedral anisotropic mesh adaptation. Comput. Phys. Commun. 201, 135–143 (2016)

    Article  MATH  Google Scholar 

  18. Sigmund, O.: Design of Materials Structures Using Topology Optimization. Department of Solid Mechanics, Technical University of Denmark (1994)

    Google Scholar 

  19. Lazarov, B.S., Sigmund, O.: Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Meth. Eng. 86(6), 765–781 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multi. Optim. 33(4–5), 401–424 (2007)

    Article  Google Scholar 

  21. Loseille, A., Alauzet, F.: Continuous mesh framework part i: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49(1), 38–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, L., Sun, P., Jinchao, X.: Optimal anisotropic meshes for minimizing interpolation errors in \(\cal{L}^p\)-norm. Math. Comput. 76(257), 179–204 (2007)

    Article  MathSciNet  Google Scholar 

  23. Vassilevski, Y.V., Lipnikov, K.N.: Error bounds for controllable adaptive algorithms based on a Hessian recovery. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 45(8), 1424–1434 (2005)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Villum Foundation (Grant No. 9301) and the Danish Council for Independent Research (DNRF122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Ejlebjerg Jensen .

Editor information

Editors and Affiliations

8 Appendix

8 Appendix

Equation (1) can be reformulated by multiplying with a Lagrange multiplier, \(\lambda \),

$$\begin{aligned} 0= & {} \int _\Omega \lambda \left[ \nabla \cdot (-\kappa \varvec{\nabla }T) - Q\right] d\Omega \nonumber \\= & {} \int _\Omega \varvec{\nabla }\lambda \cdot \kappa \varvec{\nabla }T d\Omega - \int _\Omega Q \lambda d\Omega + \int _{\partial \Omega } \lambda (\overbrace{\kappa \varvec{\nabla }T \cdot \mathbf {\hat{n}}}^{\mathbf {q}_\mathrm {bnd}}) ds. \end{aligned}$$
(11)

We now consider a variation in the design variable, \(\delta \rho \), which gives rise to a variation in the filtered design variable, \(\delta \tilde{\rho }\) and thus a variation in Eq. (11). Defining \(\lambda \) to be orthogonal to this variation gives

$$\begin{aligned} 0= & {} \int _\Omega \varvec{\nabla }\lambda \cdot \left[ \frac{\partial \kappa }{\partial \tilde{\rho }} \varvec{\nabla }T + \kappa \frac{\partial \varvec{\nabla }T}{\partial \tilde{\rho }}\right] \delta \tilde{\rho } d\Omega + \int _{\partial \Omega } \lambda \left( \frac{\partial \mathbf {q}_\mathrm {bnd}}{\partial \tilde{\rho }} \cdot \mathbf {\hat{n}}\right) \delta \tilde{\rho } ds. \end{aligned}$$
(12)

By subtracting Eq. (12) from the variation of Eq. (6), we arrive at the variation of the objective function,

$$\begin{aligned} \delta \phi= & {} \int _\Omega \left[ \frac{\partial \kappa }{\partial \tilde{\rho }} (\varvec{\nabla }T)^2 + 2 \kappa \varvec{\nabla }T \cdot \frac{\partial \varvec{\nabla }T}{\partial \tilde{\rho }} \right] \delta \tilde{\rho } d\Omega - \int _\Omega \varvec{\nabla }\lambda \cdot \left[ \frac{\partial \kappa }{\partial \tilde{\rho }} \varvec{\nabla }T + \kappa \frac{\partial \varvec{\nabla }T}{\partial \tilde{\rho }}\right] \delta \tilde{\rho } d\Omega \nonumber \\- & {} \int _{\partial \Omega } \lambda \left( \frac{\partial \mathbf {q}_\mathrm {bnd}}{\partial \tilde{\rho }} \cdot \mathbf {\hat{n}}\right) \delta \tilde{\rho } ds \nonumber \\= & {} \int _\Omega \frac{\partial \varvec{\nabla }T}{\partial \tilde{\rho }} \left[ 2\kappa \varvec{\nabla }T - \kappa \varvec{\nabla }\lambda \right] \delta \tilde{\rho } d\Omega + \int _\Omega \frac{\partial \kappa }{\partial \tilde{\rho }} \varvec{\nabla }T \left[ \varvec{\nabla }T - \varvec{\nabla }\lambda \right] \delta \tilde{\rho } d\Omega \nonumber \\- & {} \int _{\partial \Omega } \lambda \left( \frac{\partial \mathbf {q}_\mathrm {bnd}}{\partial \tilde{\rho }} \cdot \mathbf {\hat{n}}\right) \delta \tilde{\rho } ds, \end{aligned}$$
(13)

so if we set

$$\begin{aligned} \lambda= & {} 2T , \end{aligned}$$

the first integral in Eq. (13) drops out. The last term also drops out, because \(\lambda =0\) holds at the Dirichlet boundary and otherwise we have \(\mathbf {q}_\mathrm {bnd}=0\). We thus arrive at

$$\begin{aligned} \delta \phi= & {} - \int _\Omega \frac{\partial \kappa }{\partial \tilde{\rho }} (\varvec{\nabla }T)^2 \delta \tilde{\rho } d\Omega , \end{aligned}$$

which we can easily relate to the variation in the design variable using the chain-rule

$$\begin{aligned} \delta \phi= & {} - \int _\Omega \frac{\partial \kappa }{\partial \tilde{\rho }} (\varvec{\nabla }T)^2 \frac{\partial \tilde{\rho }}{\partial \rho } \delta \rho d\Omega \end{aligned}$$
(14)

We now introduce another Lagrange multiplier, \(\nu \), and multiply it with Eq. (4)

$$\begin{aligned} 0= & {} \int _\Omega \nu \left( L_\mathrm {min}^2 \nabla ^2\tilde{\rho } + \rho - \tilde{\rho }\right) d\Omega \nonumber \\= & {} - \int _\Omega \varvec{\nabla }\nu \cdot L_\mathrm {min}^2 \varvec{\nabla }\tilde{\rho } d\Omega + \int _\Omega \nu (\rho -\tilde{\rho }) d\Omega + \int _{\partial \Omega } \nu (\overbrace{\varvec{\nabla }\tilde{\rho } \cdot \mathbf {\hat{n}}}^{0}) ds \nonumber \\= & {} \int _\Omega \tilde{\rho } (L_\mathrm {min}^2 \nabla ^2 \nu ) d\Omega + \int _\Omega \nu (\rho -\tilde{\rho }) d\Omega + \int _{\partial \Omega } \tilde{\rho } (\varvec{\nabla }\nu \cdot \mathbf {\hat{n}}) ds. \end{aligned}$$
(15)

Defining \(\nu \) to be orthogonal with respect to variations in the design variable yields

$$\begin{aligned} 0= & {} \int _\Omega \frac{\partial \tilde{\rho }}{\partial \rho } \left( L_\mathrm {min}^2 \nabla ^2 \nu - \nu \right) \delta \rho d\Omega + \int _\Omega \nu \delta \rho d\Omega + \int _{\partial \Omega } \frac{\partial \tilde{\rho }}{\partial \rho } (\varvec{\nabla }\nu \cdot \mathbf {\hat{n}}) \delta \rho ds \end{aligned}$$
(16)

Adding Eqs. (14) and (16) gives

$$\begin{aligned} \delta \phi= & {} - \int _\Omega \frac{\partial \kappa }{\partial \tilde{\rho }} (\varvec{\nabla }T)^2 \frac{\partial \tilde{\rho }}{\partial \rho } \delta \rho d\Omega + \int _\Omega \frac{\partial \tilde{\rho }}{\partial \rho } \left( L_\mathrm {min}^2 \nabla ^2 \nu - \nu \right) \partial \rho d\Omega + \int _\Omega \nu \delta \rho d\Omega \\+ & {} \int _{\partial \Omega } \frac{\partial \tilde{\rho }}{\partial \rho } (\varvec{\nabla }\nu \cdot \mathbf {\hat{n}}) \delta \rho ds \\= & {} \int _\Omega \frac{\partial \tilde{\rho }}{\partial \rho } \left[ L_\mathrm {min}^2 \nabla ^2 \nu -\frac{\partial \kappa }{\partial \tilde{\rho }} (\varvec{\nabla }T)^2 - \nu \right] \delta \rho d\Omega + \int _\Omega \nu \delta \rho d\Omega + \int _{\partial \Omega } \frac{\partial \tilde{\rho }}{\partial \rho } (\varvec{\nabla }\nu \cdot \mathbf {\hat{n}}) \delta \rho ds, \end{aligned}$$

so the variation in the objective function becomes

$$\begin{aligned} \delta \phi= & {} \int _\Omega \nu \delta \rho d\Omega , \quad \mathrm {where} \\ \nu= & {} L_\mathrm {min}^2 \nabla ^2 \nu -\frac{\partial \kappa }{\partial \tilde{\rho }} (\varvec{\nabla }T)^2 \quad \mathrm {and} \quad \mathbf {\hat{n}} \cdot \varvec{\nabla }\nu = 0 \quad \mathrm {on} \, \partial \Omega . \nonumber \end{aligned}$$
(17)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jensen, K.E. (2018). Solving 2D/3D Heat Conduction Problems by Combining Topology Optimization and Anisotropic Mesh Adaptation. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_92

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics